Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Biotechnologii i Hodowli Zwierząt - Bioinformatyka (S1)
specjalność: Systemy informatyczne w biologii

Sylabus przedmiotu Komputerowe wspomaganie procesów biologicznych:

Informacje podstawowe

Kierunek studiów Bioinformatyka
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk przyrodniczych, nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Komputerowe wspomaganie procesów biologicznych
Specjalność Biologia systemów i metody informatyczne
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Sławomir Jaszczak <Slawomir.Jaszczak@zut.edu.pl>
Inni nauczyciele Marcin Korzeń <Marcin.Korzen@zut.edu.pl>, Marcin Pluciński <Marcin.Plucinski@zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL6 15 1,00,41zaliczenie
wykładyW6 15 1,00,59zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Matematyka
W-2Informatyka (umiejętność programowania na poziomie podstawowym)
W-3Elektronika (poziom podstawowy)
W-4Uklady logiczne

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Ukształtowanie umiejetności z zakresu doboru elementów cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe)
C-2Zapoznanie studentów z metodyką projektowania i implementacji algorytmów sterowania logicznego i cyfrowego z wykorzystaniem sterowników programowalnych PLC
C-3Zapoznanie studentów z podstawowymi elementami układów sterowania oraz pojeciami podstawowymi z zakresu automatyki, teorii regulacji
C-4Ukształtowanie umiejetności formułowania algorytmu sterowania logicznego w postaci flowcharts
C-5Ukształtowanie umiejetności implementacji algorytmu sterowania w wybranym języku programowania zgodnym z norma IEC 61131-3 (LD, ST, FBD, Ansi C, Automation Basic)
C-6Ukształtowanie umiejetności sporządania dokumentacji wykonawczej i powykonawczej, obejmujacej synteze sprzetowa i programowa ukladu sterowania logicznego i cyfrowego

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Modelowanie dynamicznych procesów nieelektrycznych (reaktor chemiczny z ciągłym przepływem składników, rozprzestrzenianie się epidemii, zmiany zawartości cukru i insuliny we krwi).3
T-L-2Regulacja dwupołożeniowa (temperatury w komorze klimatyzacyjnej, poziom cieczy w walczaku kotła)3
T-L-3Dobór, strojenie i implementacja algorytmu PID w sterowniku PLC dla wybranego procesu dynamicznego4
T-L-4Sterowanie sekwencyjne systemem zraszania przy wykorzystaniu sterownika PLC2
T-L-5Opracowanie stacji monitoringu temperatury i wilgotności w środowisku InTouch2
T-L-6Zaliczenie końcowe1
15
wykłady
T-W-1Pojęcia podstawowe z zakresu regulacji automatycznej (obiekt, sygnały sterujące i zakłócające, charakterystyki statyczne i dynamiczne, sprzężenie zwrotne, struktury układów regulacji i jej rodzaje. Modelowanie procesów metodą white i black box.2
T-W-2Budowa i zasada działania urządzeń pomiarowych zmiennych procesowych : temperatury, ciśnienia, przepływu, poziomu, stężenia, wilgotności i masy. Idealne charakterystyki statyczne urządzeń pomiarowych, statyczne i dynamiczne błędy pomiarowe.2
T-W-3Urządzenia wykonawczo-nastawcze : zawory, siłowniki pneumatyczne i hydrauliczne, pompy, grzałki itp.2
T-W-4Zasada działania regulatorów (z ciągłym i nieciągłym sygnałem wyjściowym) oraz prawa regulacji. 8. Szybkie prototypowanie regulatorów. Projektowanie metodami Hardware In The Loop i Software In The Loop.2
T-W-5Sterowniki programowalne PLC (konstrukcja, zasady i języki programowania, zasady projektowania algorytmów sterowania)2
T-W-6Systemy SCADA – tworzenie HMI, raportowanie, obsługa alarmów, tworzenie kanałów wymiany danych.2
T-W-7Logika rozmyta w sterowaniu (Budowa regulatora rozmytego. Strojenie regulatora rozmytego2
T-W-8Zaliczenie końcowe1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Udzial w zajeciach + zaliczenie15
A-L-2Realizacja zadan domowych10
A-L-3Przygotowanie do zaliczenia laboratorium4
A-L-4Konsultacje do laboratorium1
30
wykłady
A-W-1Udział w zajeciach i zaliczenie15
A-W-2Przygotowanie do zaliczenia wykladu10
A-W-3Realizacja zadan domowych4
A-W-4Zaliczenie koncowe1
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z prezentacja
M-2Cwiczenia laboratoryjne - samodzielna implementacja oprogramowania sterujacego z wykorzystaniem Proficy Machine Edition lub Automation Studio
M-3Cwiczenia laboratoryjne - samodzielne rozwiazywanie postawionych problemow z wykorzystaniem stanowisk badawczych

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Krotkie zaliczenie pisemne lub ustne na poczatku kazdych zajec
S-2Ocena formująca: Ocena rozwiazan postawionych problemow
S-3Ocena formująca: Zaliczenie koncowe w formie ustnej i pisemnej

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BI_1A_BIB-S-D25_W01
W wyniku przeprowadzonych zajęć student będzie w stanie scharakteryzować podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących.
BI_1A_W10P1A_W04, P1A_W07, T1A_W02, T1A_W03, T1A_W04, T1A_W05, T1A_W07InzA_W01, InzA_W02C-2, C-3T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7M-1S-3

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BI_1A_BIB-S-D25_U01
W wyniku przeprowadzonych zajęć student powinien umieć: dobierać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), formułować algorytm sterowania w postaci flowcharts, zaimplementować algorytm w wybranym języku programowania zgodnym z norma IEC 61131-3 (LD, IL,ST, FBD), sporządzić dokumentację wykonawczą.
BI_1A_U09P1A_U01, P1A_U03, P1A_U04, T1A_U02, T1A_U05, T1A_U07, T1A_U09, T1A_U15InzA_U01, InzA_U07, InzA_U08C-1, C-4, C-5, C-6T-L-1, T-L-2, T-L-3, T-L-4, T-L-5M-2, M-3S-3, S-1, S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BI_1A_BIB-S-D25_K01
W wyniku przeprowadzonych zajęć student powinien umieć: dobierać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), formułować algorytm sterowania w postaci flowcharts, zaimplementować algorytm w wybranym języku programowania zgodnym z norma IEC 61131-3 (LD, IL,ST, FBD), sporządzić dokumentację wykonawczą.
BI_1A_K03, BI_1A_K04P1A_K01, P1A_K02, P1A_K03, P1A_K05, P1A_K06, P1A_K07, P1A_K08, T1A_K01, T1A_K02, T1A_K03, T1A_K04, T1A_K06, T1A_K07InzA_K01, InzA_K02C-1, C-4, C-5, C-6T-L-1, T-L-2, T-L-3, T-L-4, T-L-5M-2, M-3S-3, S-1, S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
BI_1A_BIB-S-D25_W01
W wyniku przeprowadzonych zajęć student będzie w stanie scharakteryzować podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących.
2,0Student nie potrafi scharakteryzować w elementarny sposób podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących.
3,0Student potrafi scharakteryzować na elementarnym poziomie podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących.
3,5Student potrafi scharakteryzować i analizować podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących.
4,0Student potrafi scharakteryzować wnikliwie podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących. Student potrafi przedstawić przykłady praktyczne bez wnikliwej analizy.
4,5Student potrafi scharakteryzować wnikliwie podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących. Student potrafi przedstawić przykłady praktyczne z wnikliwą analizą.
5,0Student potrafi scharakteryzować wnikliwie podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących. Student potrafi przedstawić przykłady praktyczne z wnikliwą analizą i sposobami rozwiązywania problemów rzeczywistych.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
BI_1A_BIB-S-D25_U01
W wyniku przeprowadzonych zajęć student powinien umieć: dobierać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), formułować algorytm sterowania w postaci flowcharts, zaimplementować algorytm w wybranym języku programowania zgodnym z norma IEC 61131-3 (LD, IL,ST, FBD), sporządzić dokumentację wykonawczą.
2,0Student nie potrafi : zestawić podanych elementów cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamiki obiektu sterowania na podstawie danych wejście/wyjście wskazaną metodą, zaprojektować i zaimplementować cyfrowego algorytmu sterowania, określić optymalnego czasu próbkowania, zoptymalizować układu sterującego w oparciu o wskazane kryterium jakości, przeprowadzić teoretycznej analizy stabilności układu sterowania, skonfigurować wskazanej platformy wykonawczej dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentacji wykonawczej.
3,0Student potrafi zestawić podane elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamikę obiektu sterowania na podstawie danych wejście/wyjście wskazaną metodą, zaprojektować i zaimplementować wskazany cyfrowy algorytm sterowania, określić optymalny czas próbkowania, zoptymalizować układ sterujący w oparciu o wskazane kryterium jakości, przeprowadzić teoretyczną analizę stabilności układu sterowania, skonfigurować wskazaną platformę wykonawczą dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentację wykonawczą.
3,5Student potrafi dobrać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamikę obiektu sterowania na podstawie danych wejście/wyjście wskazaną metodą, zaprojektować i zaimplementować wskazany cyfrowy algorytm sterowania, określić optymalny czas próbkowania, zoptymalizować układ sterujący w oparciu o wskazane kryterium jakości, przeprowadzić teoretyczną analizę stabilności układu sterowania, skonfigurować wskazaną platformę wykonawczą dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentację wykonawczą.
4,0Student potrafi dobrać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamikę obiektu sterowania na podstawie danych wejście/wyjście wybraną przez siebie metodą, zaprojektować i zaimplementować wskazany cyfrowy algorytm sterowania, określić optymalny czas próbkowania, zoptymalizować układ sterujący w oparciu o wskazane kryterium jakości, przeprowadzić teoretyczną analizę stabilności układu sterowania, skonfigurować wskazaną platformę wykonawczą dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentację wykonawczą.
4,5Student potrafi dobrać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamikę obiektu sterowania na podstawie danych wejście/wyjście wybraną przez siebie metodą, zaprojektować i zaimplementować wskazany cyfrowy algorytm sterowania, określić optymalny czas próbkowania, zoptymalizować układ sterujący w oparciu o wybrane przez siebie kryterium jakości, przeprowadzić teoretyczną analizę stabilności układu sterowania, skonfigurować wskazaną platformę wykonawczą dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentację wykonawczą.
5,0Student potrafi dobrać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamikę obiektu sterowania na podstawie danych wejście/wyjście wybraną przez siebie metodą, zaprojektować i zaimplementować wybrany przez siebie cyfrowy algorytm sterowania, określić optymalny czas próbkowania, zoptymalizować układ sterujący w oparciu o wybrane przez siebie kryterium jakości, przeprowadzić teoretyczną analizę stabilności układu sterowania, skonfigurować wskazaną platformę wykonawczą dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentację wykonawczą.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
BI_1A_BIB-S-D25_K01
W wyniku przeprowadzonych zajęć student powinien umieć: dobierać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), formułować algorytm sterowania w postaci flowcharts, zaimplementować algorytm w wybranym języku programowania zgodnym z norma IEC 61131-3 (LD, IL,ST, FBD), sporządzić dokumentację wykonawczą.
2,0Student nie potrafi realizować powierzonych mu zadań w czasie zespołowej syntezy układu regulacji.
3,0Student potrafi realizować powierzone mu zadanie w czasie zespołowej syntezy układu regulacji.
3,5Student aktywnie angażuje się w realizację powierzonych mu zadań w czasie zespołowej syntezy układu regulacji.
4,0Student aktywnie angażuje się w realizację powierzonych mu zadań w czasie zespołowej syntezy układu regulacji i realizuje je w szerszym zakresie.
4,5Student aktywnie angażuje się w realizację powierzonych mu zadań w czasie zespołowej syntezy układu regulacji i realizuje je w szerszym zakresie, wykazując się przy tym kreatywnością.
5,0Student aktywnie angażuje się w realizację powierzonych mu zadań w czasie zespołowej syntezy układu regulacji i realizuje je w szerszym zakresie, wykazując się przy tym kreatywnością. Umie organizować i koordynować pracę grupy.

Literatura podstawowa

  1. Jegierski T., Wyrwał J.,Kasprzak J., Hajda J., Programowanie sterowników PLC, Wydawnictwo pracowni komputerowej Jacka Skalmierskiego, Gliwice, 1998
  2. Bryan L.A., Bryan E.A., Programmable Controllers Theory and implementation., Industrial Text Company, Marietta, 1997
  3. Broel-Plater B., Sterowniki programowalne właściwości i zasady stosowania, Wydział Elektryczny Politechniki Szczecińskiej, Szczecin, 2000
  4. Kwaśniewski J., Programowalne sterowniki przemysłowe w systemach sterowania, -, Kraków, 1999

Literatura dodatkowa

  1. Astrom K., Hagglund T., PID controllers : Theory, design and tuning, Instrument Society of America, NY, 1995

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Modelowanie dynamicznych procesów nieelektrycznych (reaktor chemiczny z ciągłym przepływem składników, rozprzestrzenianie się epidemii, zmiany zawartości cukru i insuliny we krwi).3
T-L-2Regulacja dwupołożeniowa (temperatury w komorze klimatyzacyjnej, poziom cieczy w walczaku kotła)3
T-L-3Dobór, strojenie i implementacja algorytmu PID w sterowniku PLC dla wybranego procesu dynamicznego4
T-L-4Sterowanie sekwencyjne systemem zraszania przy wykorzystaniu sterownika PLC2
T-L-5Opracowanie stacji monitoringu temperatury i wilgotności w środowisku InTouch2
T-L-6Zaliczenie końcowe1
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Pojęcia podstawowe z zakresu regulacji automatycznej (obiekt, sygnały sterujące i zakłócające, charakterystyki statyczne i dynamiczne, sprzężenie zwrotne, struktury układów regulacji i jej rodzaje. Modelowanie procesów metodą white i black box.2
T-W-2Budowa i zasada działania urządzeń pomiarowych zmiennych procesowych : temperatury, ciśnienia, przepływu, poziomu, stężenia, wilgotności i masy. Idealne charakterystyki statyczne urządzeń pomiarowych, statyczne i dynamiczne błędy pomiarowe.2
T-W-3Urządzenia wykonawczo-nastawcze : zawory, siłowniki pneumatyczne i hydrauliczne, pompy, grzałki itp.2
T-W-4Zasada działania regulatorów (z ciągłym i nieciągłym sygnałem wyjściowym) oraz prawa regulacji. 8. Szybkie prototypowanie regulatorów. Projektowanie metodami Hardware In The Loop i Software In The Loop.2
T-W-5Sterowniki programowalne PLC (konstrukcja, zasady i języki programowania, zasady projektowania algorytmów sterowania)2
T-W-6Systemy SCADA – tworzenie HMI, raportowanie, obsługa alarmów, tworzenie kanałów wymiany danych.2
T-W-7Logika rozmyta w sterowaniu (Budowa regulatora rozmytego. Strojenie regulatora rozmytego2
T-W-8Zaliczenie końcowe1
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Udzial w zajeciach + zaliczenie15
A-L-2Realizacja zadan domowych10
A-L-3Przygotowanie do zaliczenia laboratorium4
A-L-4Konsultacje do laboratorium1
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w zajeciach i zaliczenie15
A-W-2Przygotowanie do zaliczenia wykladu10
A-W-3Realizacja zadan domowych4
A-W-4Zaliczenie koncowe1
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBI_1A_BIB-S-D25_W01W wyniku przeprowadzonych zajęć student będzie w stanie scharakteryzować podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących.
Odniesienie do efektów kształcenia dla kierunku studiówBI_1A_W10ma wiedzę z zakresu inżynierii systemów informacyjnych ze szczególnym uwzględnieniem systemów informatycznych oraz zna podstawowe metody gromadzenia i przetwarzania danych i informacji
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP1A_W04ma wiedzę w zakresie najważniejszych problemów z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów oraz zna ich powiązania z innymi dyscyplinami przyrodniczymi
P1A_W07ma wiedzę w zakresie podstawowych technik i narzędzi badawczych stosowanych w zakresie dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów
T1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T1A_W04ma szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
T1A_W05ma podstawową wiedzę o trendach rozwojowych z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W01ma podstawową wiedzę o cyklu życia urządzeń, obiektów i systemów technicznych
InzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-2Zapoznanie studentów z metodyką projektowania i implementacji algorytmów sterowania logicznego i cyfrowego z wykorzystaniem sterowników programowalnych PLC
C-3Zapoznanie studentów z podstawowymi elementami układów sterowania oraz pojeciami podstawowymi z zakresu automatyki, teorii regulacji
Treści programoweT-W-1Pojęcia podstawowe z zakresu regulacji automatycznej (obiekt, sygnały sterujące i zakłócające, charakterystyki statyczne i dynamiczne, sprzężenie zwrotne, struktury układów regulacji i jej rodzaje. Modelowanie procesów metodą white i black box.
T-W-2Budowa i zasada działania urządzeń pomiarowych zmiennych procesowych : temperatury, ciśnienia, przepływu, poziomu, stężenia, wilgotności i masy. Idealne charakterystyki statyczne urządzeń pomiarowych, statyczne i dynamiczne błędy pomiarowe.
T-W-3Urządzenia wykonawczo-nastawcze : zawory, siłowniki pneumatyczne i hydrauliczne, pompy, grzałki itp.
T-W-4Zasada działania regulatorów (z ciągłym i nieciągłym sygnałem wyjściowym) oraz prawa regulacji. 8. Szybkie prototypowanie regulatorów. Projektowanie metodami Hardware In The Loop i Software In The Loop.
T-W-5Sterowniki programowalne PLC (konstrukcja, zasady i języki programowania, zasady projektowania algorytmów sterowania)
T-W-6Systemy SCADA – tworzenie HMI, raportowanie, obsługa alarmów, tworzenie kanałów wymiany danych.
T-W-7Logika rozmyta w sterowaniu (Budowa regulatora rozmytego. Strojenie regulatora rozmytego
Metody nauczaniaM-1Wykład informacyjny z prezentacja
Sposób ocenyS-3Ocena formująca: Zaliczenie koncowe w formie ustnej i pisemnej
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi scharakteryzować w elementarny sposób podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących.
3,0Student potrafi scharakteryzować na elementarnym poziomie podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących.
3,5Student potrafi scharakteryzować i analizować podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących.
4,0Student potrafi scharakteryzować wnikliwie podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących. Student potrafi przedstawić przykłady praktyczne bez wnikliwej analizy.
4,5Student potrafi scharakteryzować wnikliwie podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących. Student potrafi przedstawić przykłady praktyczne z wnikliwą analizą.
5,0Student potrafi scharakteryzować wnikliwie podstawowe elementy cyfrowych układów sterowania i standardy sygnałów wykorzystywanych w praktyce przemysłowej, metodykę projektowania cyfrowych algorytmów sterowania, języki programowania przemysłowych urządzeń sterujących. Student potrafi przedstawić przykłady praktyczne z wnikliwą analizą i sposobami rozwiązywania problemów rzeczywistych.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBI_1A_BIB-S-D25_U01W wyniku przeprowadzonych zajęć student powinien umieć: dobierać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), formułować algorytm sterowania w postaci flowcharts, zaimplementować algorytm w wybranym języku programowania zgodnym z norma IEC 61131-3 (LD, IL,ST, FBD), sporządzić dokumentację wykonawczą.
Odniesienie do efektów kształcenia dla kierunku studiówBI_1A_U09stosuje techniki programowania i języki odpowiednio do przedstawionego problemu, korzysta z wiedzy o różnicach w możliwościach zastosowań środowiska programistycznego, potrafi pod nadzorem opiekuna wykonać aplikację służącą do analizy danych biologicznych
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP1A_U01stosuje podstawowe techniki i narzędzia badawcze w zakresie dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów
P1A_U03wykorzystuje dostępne źródła informacji, w tym źródła elektroniczne
P1A_U04wykonuje zlecone proste zadania badawcze lub ekspertyzy pod kierunkiem opiekuna naukowego
T1A_U02potrafi porozumiewać się przy użyciu różnych technik w środowisku zawodowym oraz w innych środowiskach
T1A_U05ma umiejętność samokształcenia się
T1A_U07potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej
T1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
T1A_U15potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
InzA_U08potrafi - zgodnie z zadaną specyfikacją - zaprojektować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Cel przedmiotuC-1Ukształtowanie umiejetności z zakresu doboru elementów cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe)
C-4Ukształtowanie umiejetności formułowania algorytmu sterowania logicznego w postaci flowcharts
C-5Ukształtowanie umiejetności implementacji algorytmu sterowania w wybranym języku programowania zgodnym z norma IEC 61131-3 (LD, ST, FBD, Ansi C, Automation Basic)
C-6Ukształtowanie umiejetności sporządania dokumentacji wykonawczej i powykonawczej, obejmujacej synteze sprzetowa i programowa ukladu sterowania logicznego i cyfrowego
Treści programoweT-L-1Modelowanie dynamicznych procesów nieelektrycznych (reaktor chemiczny z ciągłym przepływem składników, rozprzestrzenianie się epidemii, zmiany zawartości cukru i insuliny we krwi).
T-L-2Regulacja dwupołożeniowa (temperatury w komorze klimatyzacyjnej, poziom cieczy w walczaku kotła)
T-L-3Dobór, strojenie i implementacja algorytmu PID w sterowniku PLC dla wybranego procesu dynamicznego
T-L-4Sterowanie sekwencyjne systemem zraszania przy wykorzystaniu sterownika PLC
T-L-5Opracowanie stacji monitoringu temperatury i wilgotności w środowisku InTouch
Metody nauczaniaM-2Cwiczenia laboratoryjne - samodzielna implementacja oprogramowania sterujacego z wykorzystaniem Proficy Machine Edition lub Automation Studio
M-3Cwiczenia laboratoryjne - samodzielne rozwiazywanie postawionych problemow z wykorzystaniem stanowisk badawczych
Sposób ocenyS-3Ocena formująca: Zaliczenie koncowe w formie ustnej i pisemnej
S-1Ocena formująca: Krotkie zaliczenie pisemne lub ustne na poczatku kazdych zajec
S-2Ocena formująca: Ocena rozwiazan postawionych problemow
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi : zestawić podanych elementów cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamiki obiektu sterowania na podstawie danych wejście/wyjście wskazaną metodą, zaprojektować i zaimplementować cyfrowego algorytmu sterowania, określić optymalnego czasu próbkowania, zoptymalizować układu sterującego w oparciu o wskazane kryterium jakości, przeprowadzić teoretycznej analizy stabilności układu sterowania, skonfigurować wskazanej platformy wykonawczej dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentacji wykonawczej.
3,0Student potrafi zestawić podane elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamikę obiektu sterowania na podstawie danych wejście/wyjście wskazaną metodą, zaprojektować i zaimplementować wskazany cyfrowy algorytm sterowania, określić optymalny czas próbkowania, zoptymalizować układ sterujący w oparciu o wskazane kryterium jakości, przeprowadzić teoretyczną analizę stabilności układu sterowania, skonfigurować wskazaną platformę wykonawczą dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentację wykonawczą.
3,5Student potrafi dobrać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamikę obiektu sterowania na podstawie danych wejście/wyjście wskazaną metodą, zaprojektować i zaimplementować wskazany cyfrowy algorytm sterowania, określić optymalny czas próbkowania, zoptymalizować układ sterujący w oparciu o wskazane kryterium jakości, przeprowadzić teoretyczną analizę stabilności układu sterowania, skonfigurować wskazaną platformę wykonawczą dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentację wykonawczą.
4,0Student potrafi dobrać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamikę obiektu sterowania na podstawie danych wejście/wyjście wybraną przez siebie metodą, zaprojektować i zaimplementować wskazany cyfrowy algorytm sterowania, określić optymalny czas próbkowania, zoptymalizować układ sterujący w oparciu o wskazane kryterium jakości, przeprowadzić teoretyczną analizę stabilności układu sterowania, skonfigurować wskazaną platformę wykonawczą dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentację wykonawczą.
4,5Student potrafi dobrać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamikę obiektu sterowania na podstawie danych wejście/wyjście wybraną przez siebie metodą, zaprojektować i zaimplementować wskazany cyfrowy algorytm sterowania, określić optymalny czas próbkowania, zoptymalizować układ sterujący w oparciu o wybrane przez siebie kryterium jakości, przeprowadzić teoretyczną analizę stabilności układu sterowania, skonfigurować wskazaną platformę wykonawczą dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentację wykonawczą.
5,0Student potrafi dobrać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), zidentyfikować dynamikę obiektu sterowania na podstawie danych wejście/wyjście wybraną przez siebie metodą, zaprojektować i zaimplementować wybrany przez siebie cyfrowy algorytm sterowania, określić optymalny czas próbkowania, zoptymalizować układ sterujący w oparciu o wybrane przez siebie kryterium jakości, przeprowadzić teoretyczną analizę stabilności układu sterowania, skonfigurować wskazaną platformę wykonawczą dla algorymów cyfrowych (PC + karta DAQ, PLC, PAC itp), urządzenie wykonawczo-nastawcze, urządzenie pomiarowe, sporządzić dokumentację wykonawczą.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBI_1A_BIB-S-D25_K01W wyniku przeprowadzonych zajęć student powinien umieć: dobierać elementy cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe), formułować algorytm sterowania w postaci flowcharts, zaimplementować algorytm w wybranym języku programowania zgodnym z norma IEC 61131-3 (LD, IL,ST, FBD), sporządzić dokumentację wykonawczą.
Odniesienie do efektów kształcenia dla kierunku studiówBI_1A_K03rozumie potrzebę i zna możliwości ciągłego dokształcania się (studia drugiego i trzeciego stopnia, studia podyplomowe, kursy), pogłębiania własnej wiedzy w oparciu o naukowe źródła informacji oraz wykazuje chęć dzielenia się zdobytą wiedzą z innymi
BI_1A_K04jest zdolny do efektywnej pracy samodzielnej i zespołowej, wykazuje odpowiedzialność za pracę własną, wspólnie realizowane zadania oraz powierzany sprzęt
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP1A_K01rozumie potrzebę uczenia się przez całe życie
P1A_K02potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
P1A_K03potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
P1A_K05rozumie potrzebę podnoszenia kompetencji zawodowych i osobistych
P1A_K06jest odpowiedzialny za bezpieczeństwo pracy własnej i innych; umie postępować w stanach zagrożenia
P1A_K07wykazuje potrzebę stałego aktualizowania wiedzy kierunkowej
P1A_K08potrafi myśleć i działać w sposób przedsiębiorczy
T1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
T1A_K02ma świadomość ważności i zrozumienie pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
T1A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
T1A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
T1A_K06potrafi myśleć i działać w sposób przedsiębiorczy
T1A_K07ma świadomość roli społecznej absolwenta uczelni technicznej, a zwłaszcza rozumie potrzebę formułowania i przekazywania społeczeństwu, w szczególności poprzez środki masowego przekazu, informacji i opinii dotyczących osiągnięć techniki i innych aspektów działalności inżynierskiej; podejmuje starania, aby przekazać takie informacje i opinie w sposób powszechnie zrozumiały
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_K01ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
InzA_K02potrafi myśleć i działać w sposób przedsiębiorczy
Cel przedmiotuC-1Ukształtowanie umiejetności z zakresu doboru elementów cyfrowych układów sterowania (urządzenie sterujące, urządzenia wykonawczo-nastawcze, urządzenia pomiarowe)
C-4Ukształtowanie umiejetności formułowania algorytmu sterowania logicznego w postaci flowcharts
C-5Ukształtowanie umiejetności implementacji algorytmu sterowania w wybranym języku programowania zgodnym z norma IEC 61131-3 (LD, ST, FBD, Ansi C, Automation Basic)
C-6Ukształtowanie umiejetności sporządania dokumentacji wykonawczej i powykonawczej, obejmujacej synteze sprzetowa i programowa ukladu sterowania logicznego i cyfrowego
Treści programoweT-L-1Modelowanie dynamicznych procesów nieelektrycznych (reaktor chemiczny z ciągłym przepływem składników, rozprzestrzenianie się epidemii, zmiany zawartości cukru i insuliny we krwi).
T-L-2Regulacja dwupołożeniowa (temperatury w komorze klimatyzacyjnej, poziom cieczy w walczaku kotła)
T-L-3Dobór, strojenie i implementacja algorytmu PID w sterowniku PLC dla wybranego procesu dynamicznego
T-L-4Sterowanie sekwencyjne systemem zraszania przy wykorzystaniu sterownika PLC
T-L-5Opracowanie stacji monitoringu temperatury i wilgotności w środowisku InTouch
Metody nauczaniaM-2Cwiczenia laboratoryjne - samodzielna implementacja oprogramowania sterujacego z wykorzystaniem Proficy Machine Edition lub Automation Studio
M-3Cwiczenia laboratoryjne - samodzielne rozwiazywanie postawionych problemow z wykorzystaniem stanowisk badawczych
Sposób ocenyS-3Ocena formująca: Zaliczenie koncowe w formie ustnej i pisemnej
S-1Ocena formująca: Krotkie zaliczenie pisemne lub ustne na poczatku kazdych zajec
S-2Ocena formująca: Ocena rozwiazan postawionych problemow
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi realizować powierzonych mu zadań w czasie zespołowej syntezy układu regulacji.
3,0Student potrafi realizować powierzone mu zadanie w czasie zespołowej syntezy układu regulacji.
3,5Student aktywnie angażuje się w realizację powierzonych mu zadań w czasie zespołowej syntezy układu regulacji.
4,0Student aktywnie angażuje się w realizację powierzonych mu zadań w czasie zespołowej syntezy układu regulacji i realizuje je w szerszym zakresie.
4,5Student aktywnie angażuje się w realizację powierzonych mu zadań w czasie zespołowej syntezy układu regulacji i realizuje je w szerszym zakresie, wykazując się przy tym kreatywnością.
5,0Student aktywnie angażuje się w realizację powierzonych mu zadań w czasie zespołowej syntezy układu regulacji i realizuje je w szerszym zakresie, wykazując się przy tym kreatywnością. Umie organizować i koordynować pracę grupy.