Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Techniki Morskiej i Transportu - Transport (N1)

Sylabus przedmiotu Fizyka 1:

Informacje podstawowe

Kierunek studiów Transport
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Fizyka 1
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Konstrukcji, Mechaniki i Technologii Okrętów
Nauczyciel odpowiedzialny Zbigniew Sekulski <Zbigniew.Sekulski@zut.edu.pl>
Inni nauczyciele Zbigniew Sekulski <Zbigniew.Sekulski@zut.edu.pl>
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA1 15 2,00,41zaliczenie
wykładyW1 15 3,00,59zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Matematyka: podstawy geometrii analitycznej, podstawy rachunku różniczkowego i całkowego.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Umiejętność dostrzegania i rozumienia obserwowanych w przyrodzie podstawowych zjawisk fizycznych z zakresu mechaniki klasycznej oraz szczególnej teorii względności.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Samodzielne rozwiązywanie przez studentów przykładów rachunkowych objaśniających i ilustrujących zagadnienia omawiane w trakcie wykładów.14
T-A-2Zaliczenie zajęć.1
15
wykłady
T-W-1Elementy metodologii nauk fizycznych. Determinizm i indeterminizm w opisie przyrody. Zakres stosowalności teorii fizycznych.2
T-W-2Mechanika Newtona. Koncepcje czasu i przestrzeni w mechanice Newtona. Transformacja Galileusza. Zasada względności Galileusza.5
T-W-3Światło jako promieniowanie elektromagnetyczne. Prędkość światła i eter. Doświadczenie Michelsona-Morleya.2
T-W-4Postulaty Einsteina. Transformacja Lorentza. Relatywistyczne skrócenie długości. Relatywistyczne skrócenie czasu. Względność równoczesności. Paradoks bliźniąt. Relatywistyczne prawo składania prędkości. Energia ciała. Wykresy czasoprzestrzenne.5
T-W-5Zaliczenie zajęć.1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach seminaryjnych.15
A-A-2Samodzielne rozwiązywanie zadań domowych.25
A-A-3Przygotowanie do zaliczenia zajęć.10
50
wykłady
A-W-1Uczestnictwo w wykładach.15
A-W-2Samodzielne studiowanie literatury.50
A-W-3Przygotowanie do zaliczenia wykładów.10
75

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład problemowy, wykład informacyjny, objaśnianie i wyjaśnianie.
M-2Ćwiczenia przedmiotowe.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena aktywności studenta na zajęciach.
S-2Ocena formująca: Ocena prac i ćwiczeń wykonanych samodzielnie przez studenta.
S-3Ocena podsumowująca: Ocena z pisemnego zaliczenia wykładów.
S-4Ocena podsumowująca: Ocena z pisemnego zaliczenia ćwiczeń.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
TR_1A_B04_W01
Absolwent ma podstawową wiedzę w zakresie mechaniki klasycznej i relatywistycznej umożliwiającą mu zrozumienie podstawowych zjawisk fizycznych w tym zakresie.
TR_1A_W02T1A_W01, T1A_W02, T1A_W07InzA_W02C-1T-W-4, T-W-1, T-A-1, T-A-2, T-W-3, T-W-5, T-W-2M-1, M-2S-1, S-2, S-3, S-4

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
TR_1A_B04_U01
Absolwent potrafi zinterpretować informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
TR_1A_U11T1A_U10InzA_U03C-1T-W-4, T-A-1, T-W-3, T-W-5, T-W-2, T-W-1, T-A-2M-1, M-2S-1, S-2, S-3, S-4

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
TR_1A_B04_K01
Absolwent rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
TR_1A_K07T1A_K02, T1A_K07InzA_K01C-1T-A-2, T-A-1M-2S-2, S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
TR_1A_B04_W01
Absolwent ma podstawową wiedzę w zakresie mechaniki klasycznej i relatywistycznej umożliwiającą mu zrozumienie podstawowych zjawisk fizycznych w tym zakresie.
2,0Nie zna w zadowalającym stopniu podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.
3,0Wykazuje się wystarczającą znajomością podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.
3,5Wykazuje się słabą znajomością podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.
4,0Wykazuje się dobrą znajomością podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.
4,5Wykazuje się dość dobrą znajomością podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.
5,0Wykazuje się bardzo dobrą znajomością podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
TR_1A_B04_U01
Absolwent potrafi zinterpretować informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
2,0Absolwent nie potrafi w zadowalającym stopniu zinterpretować informacji o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
3,0Absolwent potrafi w zadowalającym stopniu zinterpretować informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
3,5Absolwent słabo interpretuje informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
4,0Absolwent potrafi dobrze zinterpretować informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
4,5Absolwent potrafi dość dobrze zinterpretować informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
5,0Absolwent potrafi bardzo dobrze zinterpretować informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
TR_1A_B04_K01
Absolwent rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
2,0Absolwent nie rozumie wystarczająco społecznych aspektów praktycznych stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
3,0Absolwent rozumie wystarczająco społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
3,5Absolwent słabo rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
4,0Absolwent dobrze rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
4,5Absolwent dość dobrze rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
5,0Absolwent bardzo dobrze rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.

Literatura podstawowa

  1. Bodzenta J., Wykłady z fizyki, Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice, 2004
  2. Wróblewski A., Jaworski J., Wstęp do fizyki, T.1, PWN, Warszawa, 1984
  3. Wróblewski A., Jaworski J., Wstęp do fizyki, T2/1, PWN, Warszawa, 1989
  4. Wróblewski A., Jaworski J., Wstęp do fizyki, T2/2, PWN, Warszawa, 1991
  5. Januszajtis A., Fizyka dla politechnik, T.1, PWN, Warszawa, 1977
  6. Januszajtis A., Fizyka dla politechnik, T.2, PWN, Warszawa, 1982
  7. Hennel A., Krzyżanowski W., Szuszkiewicz W., Wódkiewicz K., Zadania i problemy z fizyki, T.1, Wydawnictwo Naukowe PWN, Warszawa, 1993

Literatura dodatkowa

  1. Tipler P.A., Llewellyn R.A., Fizyka współczesna, Wydawnictwo Naukowe PWN, Warszawa, 2011
  2. Młody Technik, Cykl artykułów "Jak to odkryli" od tytułu "Czym są i jak powstają teorie fizyczne" do "Jak masa może się zamieniać w energię i odwrotnie?" opublikowanych w kolejnych w numerach od 1/2006 do 11/2006
  3. Wróblewski A.K., Historia fizyki, Wydawnictwo Naukowe PWN, Warszawa, 2006
  4. Newton I., Matematyczne zasady filozofii przyrody, Konsorcjum Akademickie: Wydawnictwo WSE w Krakowie, WSIiZ w Rzeszowie i WSZiA w Zamościu, Kraków, 2011
  5. Einstein A., Infeld L., Ewolucja fizyki, Prószyński i S-ka, Warszawa, 1998
  6. Awicenna, Księga wiedzy, Wydawnictwo naukowe PWN, Warszawa, 2010
  7. Arystoteles, Zachęta do filozofii. Fizyka, Wydawnictwo naukowe PWN, Warszawa, 2010
  8. Warczewski J. (red.), Oblicza fizyki – między fascynacją a niepokojem, Wydawnictwo Naukowe PWN, Warszawa, 2008
  9. Styer D.F., Teoria względności dla dociekliwych, Prószyński i S-ka, Warszawa, 2011
  10. Dolnick E., Wielki zegar wszechświata, Prószyński i S-ka, Warszawa, 2012
  11. Struczkow W.W., Zagadnienia współczesnej fizyki, WSziP, Warszawa, 1986

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Samodzielne rozwiązywanie przez studentów przykładów rachunkowych objaśniających i ilustrujących zagadnienia omawiane w trakcie wykładów.14
T-A-2Zaliczenie zajęć.1
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Elementy metodologii nauk fizycznych. Determinizm i indeterminizm w opisie przyrody. Zakres stosowalności teorii fizycznych.2
T-W-2Mechanika Newtona. Koncepcje czasu i przestrzeni w mechanice Newtona. Transformacja Galileusza. Zasada względności Galileusza.5
T-W-3Światło jako promieniowanie elektromagnetyczne. Prędkość światła i eter. Doświadczenie Michelsona-Morleya.2
T-W-4Postulaty Einsteina. Transformacja Lorentza. Relatywistyczne skrócenie długości. Relatywistyczne skrócenie czasu. Względność równoczesności. Paradoks bliźniąt. Relatywistyczne prawo składania prędkości. Energia ciała. Wykresy czasoprzestrzenne.5
T-W-5Zaliczenie zajęć.1
15

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach seminaryjnych.15
A-A-2Samodzielne rozwiązywanie zadań domowych.25
A-A-3Przygotowanie do zaliczenia zajęć.10
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w wykładach.15
A-W-2Samodzielne studiowanie literatury.50
A-W-3Przygotowanie do zaliczenia wykładów.10
75
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaTR_1A_B04_W01Absolwent ma podstawową wiedzę w zakresie mechaniki klasycznej i relatywistycznej umożliwiającą mu zrozumienie podstawowych zjawisk fizycznych w tym zakresie.
Odniesienie do efektów kształcenia dla kierunku studiówTR_1A_W02ma wiedzę z zakresu fizyki, obejmującą mechanikę, termodynamikę, optykę, elektryczność i magnetyzm, fizykę jądrową oraz fizykę ciała stałego, w tym wiedzę niezbędną do: 1) pomiaru podstawowych wielkości fizycznych; 2) zrozumienia podstawowych zjawisk fizycznych występujących w przyrodzie; 3) analizowania zagadnień technicznych w oparciu o prawa fizyki
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1Umiejętność dostrzegania i rozumienia obserwowanych w przyrodzie podstawowych zjawisk fizycznych z zakresu mechaniki klasycznej oraz szczególnej teorii względności.
Treści programoweT-W-4Postulaty Einsteina. Transformacja Lorentza. Relatywistyczne skrócenie długości. Relatywistyczne skrócenie czasu. Względność równoczesności. Paradoks bliźniąt. Relatywistyczne prawo składania prędkości. Energia ciała. Wykresy czasoprzestrzenne.
T-W-1Elementy metodologii nauk fizycznych. Determinizm i indeterminizm w opisie przyrody. Zakres stosowalności teorii fizycznych.
T-A-1Samodzielne rozwiązywanie przez studentów przykładów rachunkowych objaśniających i ilustrujących zagadnienia omawiane w trakcie wykładów.
T-A-2Zaliczenie zajęć.
T-W-3Światło jako promieniowanie elektromagnetyczne. Prędkość światła i eter. Doświadczenie Michelsona-Morleya.
T-W-5Zaliczenie zajęć.
T-W-2Mechanika Newtona. Koncepcje czasu i przestrzeni w mechanice Newtona. Transformacja Galileusza. Zasada względności Galileusza.
Metody nauczaniaM-1Wykład problemowy, wykład informacyjny, objaśnianie i wyjaśnianie.
M-2Ćwiczenia przedmiotowe.
Sposób ocenyS-1Ocena formująca: Ocena aktywności studenta na zajęciach.
S-2Ocena formująca: Ocena prac i ćwiczeń wykonanych samodzielnie przez studenta.
S-3Ocena podsumowująca: Ocena z pisemnego zaliczenia wykładów.
S-4Ocena podsumowująca: Ocena z pisemnego zaliczenia ćwiczeń.
Kryteria ocenyOcenaKryterium oceny
2,0Nie zna w zadowalającym stopniu podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.
3,0Wykazuje się wystarczającą znajomością podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.
3,5Wykazuje się słabą znajomością podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.
4,0Wykazuje się dobrą znajomością podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.
4,5Wykazuje się dość dobrą znajomością podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.
5,0Wykazuje się bardzo dobrą znajomością podstawowych koncepcji fizycznych w zakresie obejmującym mechanikę klasyczną i relatywistyczną.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaTR_1A_B04_U01Absolwent potrafi zinterpretować informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
Odniesienie do efektów kształcenia dla kierunku studiówTR_1A_U11potrafi, przy formułowaniu i rozwiązywaniu zadań inżynierskich, dostrzegać ich aspekty systemowe i pozatechniczne, w tym środowiskowe, ekonomiczne i prawne
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U10potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U03potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne
Cel przedmiotuC-1Umiejętność dostrzegania i rozumienia obserwowanych w przyrodzie podstawowych zjawisk fizycznych z zakresu mechaniki klasycznej oraz szczególnej teorii względności.
Treści programoweT-W-4Postulaty Einsteina. Transformacja Lorentza. Relatywistyczne skrócenie długości. Relatywistyczne skrócenie czasu. Względność równoczesności. Paradoks bliźniąt. Relatywistyczne prawo składania prędkości. Energia ciała. Wykresy czasoprzestrzenne.
T-A-1Samodzielne rozwiązywanie przez studentów przykładów rachunkowych objaśniających i ilustrujących zagadnienia omawiane w trakcie wykładów.
T-W-3Światło jako promieniowanie elektromagnetyczne. Prędkość światła i eter. Doświadczenie Michelsona-Morleya.
T-W-5Zaliczenie zajęć.
T-W-2Mechanika Newtona. Koncepcje czasu i przestrzeni w mechanice Newtona. Transformacja Galileusza. Zasada względności Galileusza.
T-W-1Elementy metodologii nauk fizycznych. Determinizm i indeterminizm w opisie przyrody. Zakres stosowalności teorii fizycznych.
T-A-2Zaliczenie zajęć.
Metody nauczaniaM-1Wykład problemowy, wykład informacyjny, objaśnianie i wyjaśnianie.
M-2Ćwiczenia przedmiotowe.
Sposób ocenyS-1Ocena formująca: Ocena aktywności studenta na zajęciach.
S-2Ocena formująca: Ocena prac i ćwiczeń wykonanych samodzielnie przez studenta.
S-3Ocena podsumowująca: Ocena z pisemnego zaliczenia wykładów.
S-4Ocena podsumowująca: Ocena z pisemnego zaliczenia ćwiczeń.
Kryteria ocenyOcenaKryterium oceny
2,0Absolwent nie potrafi w zadowalającym stopniu zinterpretować informacji o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
3,0Absolwent potrafi w zadowalającym stopniu zinterpretować informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
3,5Absolwent słabo interpretuje informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
4,0Absolwent potrafi dobrze zinterpretować informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
4,5Absolwent potrafi dość dobrze zinterpretować informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
5,0Absolwent potrafi bardzo dobrze zinterpretować informacje o przebiegających zjawiskach w transporcie w kontekście podstawowych zjawisk fizycznych.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaTR_1A_B04_K01Absolwent rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
Odniesienie do efektów kształcenia dla kierunku studiówTR_1A_K07rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy i umiejętności oraz związaną z tym odpowiedzialność
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K02ma świadomość ważności i zrozumienie pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
T1A_K07ma świadomość roli społecznej absolwenta uczelni technicznej, a zwłaszcza rozumie potrzebę formułowania i przekazywania społeczeństwu, w szczególności poprzez środki masowego przekazu, informacji i opinii dotyczących osiągnięć techniki i innych aspektów działalności inżynierskiej; podejmuje starania, aby przekazać takie informacje i opinie w sposób powszechnie zrozumiały
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_K01ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Cel przedmiotuC-1Umiejętność dostrzegania i rozumienia obserwowanych w przyrodzie podstawowych zjawisk fizycznych z zakresu mechaniki klasycznej oraz szczególnej teorii względności.
Treści programoweT-A-2Zaliczenie zajęć.
T-A-1Samodzielne rozwiązywanie przez studentów przykładów rachunkowych objaśniających i ilustrujących zagadnienia omawiane w trakcie wykładów.
Metody nauczaniaM-2Ćwiczenia przedmiotowe.
Sposób ocenyS-2Ocena formująca: Ocena prac i ćwiczeń wykonanych samodzielnie przez studenta.
S-1Ocena formująca: Ocena aktywności studenta na zajęciach.
Kryteria ocenyOcenaKryterium oceny
2,0Absolwent nie rozumie wystarczająco społecznych aspektów praktycznych stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
3,0Absolwent rozumie wystarczająco społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
3,5Absolwent słabo rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
4,0Absolwent dobrze rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
4,5Absolwent dość dobrze rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.
5,0Absolwent bardzo dobrze rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy z podstaw fizyki do opisu i wyjaśniania otaczającego świata.