Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (S1)
Sylabus przedmiotu Podstawy nauki o materiałach II:
Informacje podstawowe
Kierunek studiów | Mechanika i budowa maszyn | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauk technicznych, studiów inżynierskich | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Podstawy nauki o materiałach II | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Instytut Inżynierii Materiałowej | ||
Nauczyciel odpowiedzialny | Anna Biedunkiewicz <Anna.Biedunkiewicz@zut.edu.pl> | ||
Inni nauczyciele | Jolanta Baranowska <Jolanta.Baranowska@zut.edu.pl>, Małgorzata Garbiak <Malgorzata.Garbiak@zut.edu.pl>, Walenty Jasiński <Walenty.Jasinski@zut.edu.pl>, Agnieszka Kochmańska <Agnieszka.Kochmanska@zut.edu.pl>, Paweł Kochmański <Pawel.Kochmanski@zut.edu.pl>, Stanisław Lenart <Stanislaw.Lenart@zut.edu.pl>, Bogdan Piekarski <Bogdan.Piekarski@zut.edu.pl>, Mieczysław Wysiecki <Mieczyslaw.Wysiecki@zut.edu.pl> | ||
ECTS (planowane) | 5,0 | ECTS (formy) | 5,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Opanowany zakres materiału z zakresu Podstaw Nauki o Materiałach I. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z wiedzy o właściwościach materiałów. |
C-2 | Student zdobywa umiejętość korzystania ze źródeł literatury. |
C-3 | Student rozwija umiejętność pracy w grupie. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Pasywacja i aktywacja metali. Badanie odporności korozyjnej złącza spawanego. Kinetyka korozji gazowej. Korozja wżerowa. Badania koroyzjne w mgle solnej. Badanie właściwości korozyjnych podstawowych metalicznych tworzyw konstrukcyjnych to znaczy: stali węglowej, stali stopowej (18/8), aluminium, duraluminium, miedzi, tytanu. | 9 |
T-L-2 | Badanie hartowności stali metodą Jomminy’ego. Badania makroskopowe. Materiały narzędziowe (spiekane materiały narzędziowe). Stale utwardzane wydzieleniowo. Metody badań materiałów – rentgenografia strukturalna XRD. Metody badań materiałów –mikroskopia elektronowa SEM. Mikroanaliza rentgenowska EDS, WDS. Badania nieniszczące. | 21 |
30 | ||
wykłady | ||
T-W-1 | Mechanizmy zniszczenia materiałów w warunkach eksploatacyjnych. Klasyfikacja zjawisk korozyjnych. Przykłady błędów konstrukcyjnych. Powinowactwo metali z tlenem. Stan pasywny metali. Osiem form korozji: galwaniczna, naprężeniowa, wżerowa, szczelinowa, międzykrystaliczna, selektywna, korozja-erozja, pękanie wodorowe. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Powłoki ochronne. Korozja tworzyw polimerowych, ceramiki i betonów. Metody badań korozyjnych. Negatywne skutki korozji i ochrony przed korozją dla właściwości mechanicznych i środowiska naturalnego. Metody badań korozyjnych. Materiały w ochronie przed korozją. | 15 |
T-W-2 | Podstawy obróbki cieplnej i cieplno - chemicznej stopów żelaza. Stale stopowe konstrukcyjne, narzędziowe i specjalne. Żeliwa. Stopy narzędziowe: do pracy na zimno, do pracy na gorąco, stale szybkotnące, ceramika narzędziowa. Stopy o specjalnych właściwościach. Stopy aluminium, miedzi, magnezu, cynku. Stopy nieżelazne specjalne. Zjawiska nadplastyczności, nadprzewodnictwa, materiały z pamięcią kształtu, szkła metaliczne. Materiały ceramiczne i polimerowe. | 30 |
45 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Uczestnictwo w zajęciach laboratoryjnych i zaliczeniu ćwiczeń. | 30 |
A-L-2 | Samodzielne opracowanie wyników eksperymentów. | 12 |
A-L-3 | Uczestnictwo w konsultacjach | 2 |
A-L-4 | Przygotowanie do zajęć na podstawie wskazanej literatury. | 12 |
A-L-5 | Zaliczenie pisemne ćwiczeń. | 3 |
59 | ||
wykłady | ||
A-W-1 | Uczestnictwo w wykładach. | 30 |
A-W-2 | Samodzielne analizowanie treści wykładu w oparciu o wskazaną literaturę. | 30 |
A-W-3 | Przygotowanie do egazminu w oparciu o zalecana literaturę. | 25 |
A-W-4 | Udział w konsultacjach. | 2 |
A-W-5 | Udział w egzaminie pisemnym i ustnym. | 3 |
90 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe. |
M-2 | Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium. Prezentacje sprawozdań z przeprowadzonych ekperymentów. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych, zaliczeń krótkich sprawdzianów spradzajacych przygotowanie do ćwiczeń oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie podsumowujące. |
S-2 | Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do egzaminu pisemnego; ocenę pozytywną otrzymują po uzyskaniu co najmiej połowy punktów. Do egzaminu ustnego przystępują studenci po uzykaniu ok 50% punktów z egzaminu pisemnego. |
S-3 | Ocena podsumowująca: Ocena końcowa z przedmiotu jest średnią ważoną z egzaminu (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6). |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
MBM_1A_C32_W01 Student zna podstawy obróbki cieplnochemicznej oraz wiedzę o materiałach konstrukcyjnych i narzędziowych. Student ma wiedzę o zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania. | MBM_1A_W02 | T1A_W01 | — | C-1, C-2, C-3 | T-W-2, T-W-1, T-L-1, T-L-2 | M-1, M-2 | S-3, S-1, S-2 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
MBM_1A_C32_U01 Student potrafi skorelować strukturę materiałów konstrukcyjnych oraz narzędziowych z ich właściwościami oraz potrafi wybrać metodę badań struktury i właściwości materiałów, a także dokonać interpretacji uzyskanych wyników, potrafi wskazać lub zaproponować materiał do określonych warunków zużycia materiału. | MBM_1A_U05, MBM_1A_U18 | T1A_U05, T1A_U16 | InzA_U03 | C-1, C-3, C-2 | T-W-2, T-L-1, T-L-2, T-W-1 | M-1, M-2 | S-1, S-3, S-2 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
MBM_1A_C32_K01 Ma świadomość ważności i rozumie pozatechniczne apekty i skutki działaności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje. Potrafi współpracować w grupie. | MBM_1A_K02, MBM_1A_K03 | T1A_K02, T1A_K03 | InzA_K01 | C-1, C-2, C-3 | T-W-1, T-L-2, T-W-2, T-L-1 | M-1, M-2 | S-3, S-1, S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
MBM_1A_C32_W01 Student zna podstawy obróbki cieplnochemicznej oraz wiedzę o materiałach konstrukcyjnych i narzędziowych. Student ma wiedzę o zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania. | 2,0 | Student nie ma podstaw wiedzy o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania. |
3,0 | Student ma podstawy wiedzy o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania. | |
3,5 | Student ma dobrze ugruntowaną wiedzę o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania. | |
4,0 | Student ma dobrze ugruntowaną wiedzę o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania, zna sposoby doboru materiału do warunków jego eksploatacji. | |
4,5 | Student zna sposoby doboru materiałów konstrukcyjnych i narzędziowych lub/i ich obróbek cieplnochemicznych do warunków eksploatacji oraz opisuje zjawiska niszczenia materiałów w warunkach eksploatacyjnych i zna sposoby zapobiegania. | |
5,0 | Student zna sposoby doboru materiałów konstrukcyjnych i narzędziowych lub/i ich obróbek cieplnochemicznych do warunków eksploatacji oraz opisuje zjawiska niszczenia materiałów w warunkach eksploatacyjnych i zna sposoby zapobiegania, wskazuje potencjalne przyczyny zniszczenia na podstawie objawów. |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
MBM_1A_C32_U01 Student potrafi skorelować strukturę materiałów konstrukcyjnych oraz narzędziowych z ich właściwościami oraz potrafi wybrać metodę badań struktury i właściwości materiałów, a także dokonać interpretacji uzyskanych wyników, potrafi wskazać lub zaproponować materiał do określonych warunków zużycia materiału. | 2,0 | Student nie potrafi skorelować struktury materiału konstrukcyjnego i narzędziowego z właściwościami, nie potrafi wybrać metody badań oraz nie potrafi interpretować wyników badań materiałów. |
3,0 | Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi wskazać lub zaproponować materiał do określonych warunków zużycia materiału. | |
3,5 | Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań składu fazowego, struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wskazać lub zaproponować materiał do określonych warunków zużycia materiału. | |
4,0 | Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań składu fazowego, struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wskazać lub zaproponować grupę materiałów i wybrać najkorzystniejszy do określonych warunków zużycia materiału. | |
4,5 | Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań składu fazowego, struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wybrać najkorzystniejszy materiał lub/i zaproponować modyfikację właściwości materiału metodami obróbki cieplnochemicznej do określonych warunków eksploatacyjnych. | |
5,0 | Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań składu fazowego, struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wybrać najkorzystniejszy materiał lub zaproponować modyfikację właściwości materiału metodami obróbki cieplnochemicznej do określonych warunków eksploatacyjnych. Student potrafi ocenić objawy zniszczenia materiału i wskazać przyczyny. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
MBM_1A_C32_K01 Ma świadomość ważności i rozumie pozatechniczne apekty i skutki działaności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje. Potrafi współpracować w grupie. | 2,0 | Nie ma świadomości ważności i nie rozumie pozatechnicznych apektów i skutków działaności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje. Nie potrafi współpracować w grupie. |
3,0 | Ma świadomość ważności i rozumie pozatechniczne apekty i skutki działaności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje. Potrafi współpracować w grupie. | |
3,5 | Ma świadomość ważności i rozumie pozatechniczne apekty i skutki działaności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje. Potrafi współpracować w grupie. | |
4,0 | Ma świadomość ważności i rozumie pozatechniczne apekty i skutki działaności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje. Potrafi współpracować w grupie. | |
4,5 | Ma świadomość ważności i rozumie pozatechniczne apekty i skutki działaności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje. Potrafi współpracować w grupie. | |
5,0 | Ma świadomość ważności i rozumie pozatechniczne apekty i skutki działaności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje. Potrafi współpracować w grupie. |
Literatura podstawowa
- J. Baszkiewicz, M. Kamiński, Podstawy korozji materiałów, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2006, II
- G.Wranglen, Podstawy korozji i ochrony metali, WNT, Warszawa, 1985, II
- H.H. Uhlig, Korozja i jej zapobieganie, WNT, Warszawa, 1976
- Dobrzanski L.A, Materiały inżynierskie i projektowanie materiałowe: podstawy nauki o materiałach i metaloznawstwo, Wydawnictwa Naukowo-Techniczne, Warszawa, 2006
- S. Prowans, Metaloznawstwo, PWN, Warszawa, 1988
- L. A. Dobrzanski, Metaloznawstwo z podstawami nauki o materiałach, WNT, Warszawa, 1994
- K. Przybyłowicz, Metaloznawstwo, WNT, Warszawa, 1994
- A. Barbacki, Metaloznawstwo dla mechaników, Wydawnictwo Politechniki Poznanskiej, Poznan, 1998
- S. Prowans, Materiałoznawstwo – cwiczenia laboratoryjne, Politechnika Szczecinska, Szczecin, 1978
Literatura dodatkowa
- A. Appen, Żaroodporne powłoki nieorganiczne, WNT, Warszawa, 1970
- S. Mrowec, T. Weber, Korozja gazowa metali, Wyd. „Śląsk”, Katowice, 1975
- L. A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo, WNT, Gliwice -Warszawa, 2002