Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Technologii i Inżynierii Chemicznej - Inżynieria chemiczna i procesowa (S1)

Sylabus przedmiotu Inżynieria reaktorów chemicznych:

Informacje podstawowe

Kierunek studiów Inżynieria chemiczna i procesowa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Inżynieria reaktorów chemicznych
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Inżynierii Chemicznej i Procesowej
Nauczyciel odpowiedzialny Halina Murasiewicz <Halina.Murasiewicz@zut.edu.pl>
Inni nauczyciele Halina Murasiewicz <Halina.Murasiewicz@zut.edu.pl>, Paulina Pianko-Oprych <Paulina.Pianko@zut.edu.pl>, Barbara Zakrzewska <Barbara.Zakrzewska@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA5 15 1,00,28zaliczenie
projektyP5 15 1,00,32zaliczenie
wykładyW5 30 2,00,40egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Stechiometria reakcji chemicznych. Podstawy kinetyki chemicznej.
W-2Podstawy bilansów masy i energii w technice

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studenta ze sposobami identyfikacji równan kinetycznych reakcji chemicznych
C-2Przygotowanie studenta do prowadzenia podstawowych obliczeń projektowych różnych typów reaktorów chemicznych i biochemicznych

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Obliczenia podstawowe: liczba reakcji liniowo niezależnych; stopnie przemiany; skład mieszaniny poreakcyjnej1
T-A-2Przemiany złożone – stopnie przemiany; skład mieszaniny poreakcyjnej; reakcje z kontrakcją1
T-A-3Statyka chemiczna – skład równowagowy reakcji; stałe równowagowe1
T-A-4Kinetyka chemiczna – rzędowość reakcji zalezność stałej szybkości reakcji od temperatury; równanie Arrheniusa2
T-A-5Reaktory zbiornikowe okresowe – czas przebywania w reaktorze2
T-A-6Reaktory zbiornikowe okresowe – objętość reaktora2
T-A-7Reaktor rurowy przepływowy – objętość reaktora2
T-A-8Reaktor zbiornikowy przepływowy – zastępczy czas przebywania, objętość przestrzeni reakcyjnej, zdolność produkcyjna2
T-A-9Bioreaktory - współczynnik wydajności wzrostu biomasy, szybkość/wydajność wzrostu biomasy2
15
projekty
T-P-1Studenci podczas tej formy zajęć będą realizować obliczenia projektowe dotyczące wybranego reaktora/ów oraz /lub kaskady reaktorów, w którym/ych będzie przebiegać pojedyncza reakcja chemiczna lub złożony proces reaktorowy. Projekt będzie realizowany indywidualnie przez każdego studenta i etapowo (tygodniowo). Po każdym etapie student powinien dostarczyć raport w wyznaczonym przez prowadzącego terminie. Każdy etapowy raport będzie oceniani (ocena cząstkowa, ciągła) a sposób oceny i wytyczne do przygotowania projektu wraz z harmonogramem realizacji zadań zostaną dokładnie przedstawione i omówione na początku zajęć projektowych. Nadzór na realizacja poszczególnych etapów projektu będzie prowadzony przez prowadzącego zajęcia, co ma na celu wyjaśnienie wszelkich wątpliwości i skorygowanie błędów. Każdy ze studentów powinien dostarczyć pod koniec semestru samodzielna prace projektową uzupełnioną o rysunek techniczny. Integralna część projektu stanowią cząstkowe raporty, które są załącznikiem do końcowej wersji projektu. Ocena końcowa projektu będzie obliczona na podstawie średniej z ocen cząstkowych. Projekt stanowi okazję do przetestowania inżynierskich umiejętności nabytych w dotychczasowym toku studiów, sprawdzenia technicznych możliwości, jak również ocenienia kreatywności.15
15
wykłady
T-W-1Pojęcia podstawowe, stopień przemiany, liczba postępu reakcji, selektywność procesu, klasyfikacja reaktorów, szybkość procesu i reakcji. Kinetyka procesów homogenicznych; równania kinetyczne, zależność od temperatury, rzędowość reakcji, wyznaczanie równań kinetycznych metodą różniczkową i całkową. Obliczenia reaktorów homogenicznych: Klasyfikacja, Równania projektowe bilansu masy i energii. Reaktory okresowe izotermiczne, adiabatyczne i inne z reakcjami prostymi i złożonymi. Reaktory przepływowe, rurowe, wieżowe, zbiornikowe - równania projektowe bilansu masy i energii w reaktorach izotermicznych, adiabatycznych i innych, reakcje proste i złożone. Kaskada reaktorów zbiornikowych, reakcje proste i złożone. Reaktor cyrkulacyjny i półprzepływowy. Obliczenia reaktorów heterogenicznych: Klasyfikacja, Etapy procesów niekatalitycznych i kontaktowych. Dyfuzja zewnętrzna i wewnętrzna. Dyfuzja kapilarna i w materiałach porowatych dwu- i wieloskładnikowa. Kinetyka procesu powierzchniowego, procesów kontaktowych. Reaktory katalityczne, modele 1- i 2-wymiarowe. Równania projektowe bilansu masy i energii. Rozkłady czasów przebywania, funkcje rozkładu, ich wyznaczanie w reaktorach idealnych i rzeczywistych. Metody projektowania reaktorów rzeczywistych. Inżynieria reaktorów biochemicznych. Procesy biochemiczne, fermentacyjne, bilanse masowe, kinetyka reakcji biochemicznych, modele nie/ strukturalne, nie/ segregowane.30
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach15
A-A-2Przygotowanie do zaliczenia9
A-A-3Konsultacje z nauczycielem1
25
projekty
A-P-1Udział w zajęciach projektowych.15
A-P-2Przygotowanie do zajęć projektowych.10
25
wykłady
A-W-1Uczestnictwo w zajęciach30
A-W-2Przygotowanie do zaliczeń i egzaminu, studiowanie wykładu literatury przedmiotu15
A-W-3Konsulatacje z nauczycielami akademickimi2
A-W-4Egzamin3
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metody podające - wykład informacyjny
M-2Metody praktyczne - przedmiotowe ćwiczenia audytoryjne i projektowe

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Egzamin z zakresu wykładu: forma pisemna, 105 min
S-2Ocena podsumowująca: Zaliczenie ćwiczeń audytoryjnych: dwa kolokwia pisemne; jedno w połowie semestru, drugie po zrealizowaniu materiału ćwiczeń
S-3Ocena podsumowująca: Zaliczenie obliczeń projektowych: jedno sprawozdanie pisemne na koniec semestru

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_1A_C24_W01
Studenci zdobywają wiedzę z zakresu formułowania i rozwiązania równań modeli matematycznych różnych typów reaktorów chemicznych.
ICHP_1A_W15C-1, C-2T-W-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7, T-A-8, T-A-9, T-A-1, T-P-1M-1, M-2S-1, S-2, S-3

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_1A_C24_U01
Student potrafi wykonać obliczenia dla różnego typu reaktorów chemicznych.
ICHP_1A_U03, ICHP_1A_U09, ICHP_1A_U16C-2T-W-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7, T-A-8, T-A-9, T-A-1M-2S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_1A_C24_K01
Student uczy się pracy zespołowej i aktywności oraz udowadnia zdolność do stosowania nabytej wiedzy.
ICHP_1A_K01C-2T-W-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7, T-A-8, T-A-9, T-A-1M-2S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
ICHP_1A_C24_W01
Studenci zdobywają wiedzę z zakresu formułowania i rozwiązania równań modeli matematycznych różnych typów reaktorów chemicznych.
2,0Student nie opanował podstawowej wiedzy podanej na wykładzie. Student nie opanował podstawowej wiedzy podanej na ćwiczeniach audytoryjnych lub projektowych.
3,0Student opanował podstawową wiedzę podaną na wykładzie i potrafi ją zinterpretować i wykorzystać w nieznacznym stopniu. Student opanował podstawową wiedzę podaną na ćwiczeniach audytoryjnych lub projektowych i potrafi ją zinterpretować i wykorzystać w nieznacznym stopniu.
3,5Student opanował podstawową wiedzę podaną na wykładzie i potrafi ją zinterpretować i wykorzystać w stopniu dostatecznym. Student opanował podstawową wiedzę podaną na ćwiczeniach audytoryjnych lub projektowych i potrafi ją zinterpretować i wykorzystać w stopniu dostatecznym.
4,0Student opanował większość podanych na wykładzie informacji i potrafi je zinterpretować i wykorzystać w stopniu dobrym. Student opanował większość informacjipodanych na ćwiczeniach audytoryjnych i projektowych, i potrafi je zinterpretować i wykorzystać w stopniu dobrym.
4,5Student opanował całą wiedzę podaną na wykładzie i potrafi ją właściwie zinterpretować i wykorzystać w znacznym stopniu. Student opanował całą wiedzę podaną na ćwiczeniach audytoryjnych i projektowych i potrafi ją właściwie zinterpretować i wykorzystać w znacznym stopniu.
5,0Student opanował całą wiedzę podaną na wykładzie i potrafi ją właściwie zinterpretować i w pełni wykorzystać praktycznie. Student opanował całą wiedzę podaną na ćwiczeniach audytoryjnych i projektowych i potrafi ją właściwie zinterpretować i w pełni wykorzystać praktycznie.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
ICHP_1A_C24_U01
Student potrafi wykonać obliczenia dla różnego typu reaktorów chemicznych.
2,0Student nie potrafi wykorzystać wiedzy teoretycznej do samodzielnego sformułowania podstawowych równań modelowych i zagadnień projektowych. Nie potrafi zastosować żadnej z podanych na wykładzie i ćwiczeniach metod obliczeniowych.
3,0Student potrafi samodzielnie sformułowac podstawowe równania modelowe. Do stworzenia właściwego modelu projektowanego reaktora i przygotowania danych niezbędnych do rozwiązania równań modelowych i projektowych potrzebuje pomocy innych.
3,5Student potrafi wykorzystać wiedzę teoretyczną i formułuje model z nieznacznymi uchybieniami. Potrafi zastosować najprostsze z podanych na wykładach i ćwiczeniach metod obliczania reaktorów chemicznych do rozwiązania danego problemu obliczeniowego i zastosowania w projektowaniu.
4,0Student potrafi samodzielnie stworzyć model matematyczny do rozwiązania zadanego problemu projektowego. W modelu i obliczeniach projektowych występują nieliczne błędy. Potrafi samodzielnie, z niewielkimi uchybieniami, przygotować dane do rozwiązania problemu.
4,5Student potrafi samodzielnie, z niewielkimi uchybieniami, stworzyć model matematyczny do rozwiązania zadanego problemu. Potrafi samodzielnie przygotować dane do rozwiązania problemu i oddaje w terminie projekt, w którym nie ma znaczących błędów.
5,0Student potrafi samodzielnie i bezbłędnie stworzyć model matematyczny do rozwiązania zadanego problemu. Potrafi samodzielnie wybrać najwłaściwszą metodę obliczeniową do rozwiązania równań modelowych reaktorów chemicznych, oddaje w terminie bezbłędny projekt reaktora.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
ICHP_1A_C24_K01
Student uczy się pracy zespołowej i aktywności oraz udowadnia zdolność do stosowania nabytej wiedzy.
2,0Student nie potrafi współpracować z grupą w zakresie obliczeń reaktorowych i nie wykonuje poleceń lidera.
3,0Student potrafi w dostatecznym stopniu myśleć i działać grupowo w dziedzinie inzynierii reaktorów chemicznych. Student zauważa ważność obliczeń bilansowych dla reaktorów chemicznych, ale nie potrafi przedstawić tego na wybranym przykładzie.
3,5Student wykonuje niektóre polecenia lidera. Chętnie współpracuje z pozostałymi członkami grupy w zakresie obliczeń reaktorowych.
4,0Student dokładnie wykonuje polecenia lidera i współpracuje z pozostałymi członkami grupy w sposób kreatywny i innowacyjny.
4,5Student potrafi współpracować z liderem a w razie potrzeby go kreatywnie zastąpić w zakresie zagadnień reaktorowych.
5,0Student jest liderem doskonale kierującym grupą i potrafi wykorzystać potencjał każdego z członków grupy.

Literatura podstawowa

  1. Burghardt A., Bartelmus G., Inżynieria reaktorów chemicznych, Wydawnictwo Naukowe PWN, Warszawa, 2001, Tom I oraz II
  2. Tabiś A., Zasady inżynierii reaktorów chemicznych, Wydawnictwa Naukowo-Techniczne, Warszawa, 2000
  3. Krzystek L., Stechiometria i kinetyka bioprocesów, Politechnika Łódzka, Łódź, 2010
  4. Bałdyga J., Henczka M., Podgórska W., Obliczenia w inżynierii bioreaktorów, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1996
  5. Szewczyk K.W., Bilansowanie i kinetyka procesów biochemicznych, Wydawnictwa Politechniki Warszawskiej, Warszawa, 1993

Literatura dodatkowa

  1. Kucharskji S., Głowiński J., Podstawy obliczeń projektowych w technologii chemicznej, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2010

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Obliczenia podstawowe: liczba reakcji liniowo niezależnych; stopnie przemiany; skład mieszaniny poreakcyjnej1
T-A-2Przemiany złożone – stopnie przemiany; skład mieszaniny poreakcyjnej; reakcje z kontrakcją1
T-A-3Statyka chemiczna – skład równowagowy reakcji; stałe równowagowe1
T-A-4Kinetyka chemiczna – rzędowość reakcji zalezność stałej szybkości reakcji od temperatury; równanie Arrheniusa2
T-A-5Reaktory zbiornikowe okresowe – czas przebywania w reaktorze2
T-A-6Reaktory zbiornikowe okresowe – objętość reaktora2
T-A-7Reaktor rurowy przepływowy – objętość reaktora2
T-A-8Reaktor zbiornikowy przepływowy – zastępczy czas przebywania, objętość przestrzeni reakcyjnej, zdolność produkcyjna2
T-A-9Bioreaktory - współczynnik wydajności wzrostu biomasy, szybkość/wydajność wzrostu biomasy2
15

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Studenci podczas tej formy zajęć będą realizować obliczenia projektowe dotyczące wybranego reaktora/ów oraz /lub kaskady reaktorów, w którym/ych będzie przebiegać pojedyncza reakcja chemiczna lub złożony proces reaktorowy. Projekt będzie realizowany indywidualnie przez każdego studenta i etapowo (tygodniowo). Po każdym etapie student powinien dostarczyć raport w wyznaczonym przez prowadzącego terminie. Każdy etapowy raport będzie oceniani (ocena cząstkowa, ciągła) a sposób oceny i wytyczne do przygotowania projektu wraz z harmonogramem realizacji zadań zostaną dokładnie przedstawione i omówione na początku zajęć projektowych. Nadzór na realizacja poszczególnych etapów projektu będzie prowadzony przez prowadzącego zajęcia, co ma na celu wyjaśnienie wszelkich wątpliwości i skorygowanie błędów. Każdy ze studentów powinien dostarczyć pod koniec semestru samodzielna prace projektową uzupełnioną o rysunek techniczny. Integralna część projektu stanowią cząstkowe raporty, które są załącznikiem do końcowej wersji projektu. Ocena końcowa projektu będzie obliczona na podstawie średniej z ocen cząstkowych. Projekt stanowi okazję do przetestowania inżynierskich umiejętności nabytych w dotychczasowym toku studiów, sprawdzenia technicznych możliwości, jak również ocenienia kreatywności.15
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Pojęcia podstawowe, stopień przemiany, liczba postępu reakcji, selektywność procesu, klasyfikacja reaktorów, szybkość procesu i reakcji. Kinetyka procesów homogenicznych; równania kinetyczne, zależność od temperatury, rzędowość reakcji, wyznaczanie równań kinetycznych metodą różniczkową i całkową. Obliczenia reaktorów homogenicznych: Klasyfikacja, Równania projektowe bilansu masy i energii. Reaktory okresowe izotermiczne, adiabatyczne i inne z reakcjami prostymi i złożonymi. Reaktory przepływowe, rurowe, wieżowe, zbiornikowe - równania projektowe bilansu masy i energii w reaktorach izotermicznych, adiabatycznych i innych, reakcje proste i złożone. Kaskada reaktorów zbiornikowych, reakcje proste i złożone. Reaktor cyrkulacyjny i półprzepływowy. Obliczenia reaktorów heterogenicznych: Klasyfikacja, Etapy procesów niekatalitycznych i kontaktowych. Dyfuzja zewnętrzna i wewnętrzna. Dyfuzja kapilarna i w materiałach porowatych dwu- i wieloskładnikowa. Kinetyka procesu powierzchniowego, procesów kontaktowych. Reaktory katalityczne, modele 1- i 2-wymiarowe. Równania projektowe bilansu masy i energii. Rozkłady czasów przebywania, funkcje rozkładu, ich wyznaczanie w reaktorach idealnych i rzeczywistych. Metody projektowania reaktorów rzeczywistych. Inżynieria reaktorów biochemicznych. Procesy biochemiczne, fermentacyjne, bilanse masowe, kinetyka reakcji biochemicznych, modele nie/ strukturalne, nie/ segregowane.30
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach15
A-A-2Przygotowanie do zaliczenia9
A-A-3Konsultacje z nauczycielem1
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Udział w zajęciach projektowych.15
A-P-2Przygotowanie do zajęć projektowych.10
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach30
A-W-2Przygotowanie do zaliczeń i egzaminu, studiowanie wykładu literatury przedmiotu15
A-W-3Konsulatacje z nauczycielami akademickimi2
A-W-4Egzamin3
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_C24_W01Studenci zdobywają wiedzę z zakresu formułowania i rozwiązania równań modeli matematycznych różnych typów reaktorów chemicznych.
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_W15zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu inżynierii chemicznej i procesowej \
Cel przedmiotuC-1Zapoznanie studenta ze sposobami identyfikacji równan kinetycznych reakcji chemicznych
C-2Przygotowanie studenta do prowadzenia podstawowych obliczeń projektowych różnych typów reaktorów chemicznych i biochemicznych
Treści programoweT-W-1Pojęcia podstawowe, stopień przemiany, liczba postępu reakcji, selektywność procesu, klasyfikacja reaktorów, szybkość procesu i reakcji. Kinetyka procesów homogenicznych; równania kinetyczne, zależność od temperatury, rzędowość reakcji, wyznaczanie równań kinetycznych metodą różniczkową i całkową. Obliczenia reaktorów homogenicznych: Klasyfikacja, Równania projektowe bilansu masy i energii. Reaktory okresowe izotermiczne, adiabatyczne i inne z reakcjami prostymi i złożonymi. Reaktory przepływowe, rurowe, wieżowe, zbiornikowe - równania projektowe bilansu masy i energii w reaktorach izotermicznych, adiabatycznych i innych, reakcje proste i złożone. Kaskada reaktorów zbiornikowych, reakcje proste i złożone. Reaktor cyrkulacyjny i półprzepływowy. Obliczenia reaktorów heterogenicznych: Klasyfikacja, Etapy procesów niekatalitycznych i kontaktowych. Dyfuzja zewnętrzna i wewnętrzna. Dyfuzja kapilarna i w materiałach porowatych dwu- i wieloskładnikowa. Kinetyka procesu powierzchniowego, procesów kontaktowych. Reaktory katalityczne, modele 1- i 2-wymiarowe. Równania projektowe bilansu masy i energii. Rozkłady czasów przebywania, funkcje rozkładu, ich wyznaczanie w reaktorach idealnych i rzeczywistych. Metody projektowania reaktorów rzeczywistych. Inżynieria reaktorów biochemicznych. Procesy biochemiczne, fermentacyjne, bilanse masowe, kinetyka reakcji biochemicznych, modele nie/ strukturalne, nie/ segregowane.
T-A-2Przemiany złożone – stopnie przemiany; skład mieszaniny poreakcyjnej; reakcje z kontrakcją
T-A-3Statyka chemiczna – skład równowagowy reakcji; stałe równowagowe
T-A-4Kinetyka chemiczna – rzędowość reakcji zalezność stałej szybkości reakcji od temperatury; równanie Arrheniusa
T-A-5Reaktory zbiornikowe okresowe – czas przebywania w reaktorze
T-A-6Reaktory zbiornikowe okresowe – objętość reaktora
T-A-7Reaktor rurowy przepływowy – objętość reaktora
T-A-8Reaktor zbiornikowy przepływowy – zastępczy czas przebywania, objętość przestrzeni reakcyjnej, zdolność produkcyjna
T-A-9Bioreaktory - współczynnik wydajności wzrostu biomasy, szybkość/wydajność wzrostu biomasy
T-A-1Obliczenia podstawowe: liczba reakcji liniowo niezależnych; stopnie przemiany; skład mieszaniny poreakcyjnej
T-P-1Studenci podczas tej formy zajęć będą realizować obliczenia projektowe dotyczące wybranego reaktora/ów oraz /lub kaskady reaktorów, w którym/ych będzie przebiegać pojedyncza reakcja chemiczna lub złożony proces reaktorowy. Projekt będzie realizowany indywidualnie przez każdego studenta i etapowo (tygodniowo). Po każdym etapie student powinien dostarczyć raport w wyznaczonym przez prowadzącego terminie. Każdy etapowy raport będzie oceniani (ocena cząstkowa, ciągła) a sposób oceny i wytyczne do przygotowania projektu wraz z harmonogramem realizacji zadań zostaną dokładnie przedstawione i omówione na początku zajęć projektowych. Nadzór na realizacja poszczególnych etapów projektu będzie prowadzony przez prowadzącego zajęcia, co ma na celu wyjaśnienie wszelkich wątpliwości i skorygowanie błędów. Każdy ze studentów powinien dostarczyć pod koniec semestru samodzielna prace projektową uzupełnioną o rysunek techniczny. Integralna część projektu stanowią cząstkowe raporty, które są załącznikiem do końcowej wersji projektu. Ocena końcowa projektu będzie obliczona na podstawie średniej z ocen cząstkowych. Projekt stanowi okazję do przetestowania inżynierskich umiejętności nabytych w dotychczasowym toku studiów, sprawdzenia technicznych możliwości, jak również ocenienia kreatywności.
Metody nauczaniaM-1Metody podające - wykład informacyjny
M-2Metody praktyczne - przedmiotowe ćwiczenia audytoryjne i projektowe
Sposób ocenyS-1Ocena podsumowująca: Egzamin z zakresu wykładu: forma pisemna, 105 min
S-2Ocena podsumowująca: Zaliczenie ćwiczeń audytoryjnych: dwa kolokwia pisemne; jedno w połowie semestru, drugie po zrealizowaniu materiału ćwiczeń
S-3Ocena podsumowująca: Zaliczenie obliczeń projektowych: jedno sprawozdanie pisemne na koniec semestru
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowej wiedzy podanej na wykładzie. Student nie opanował podstawowej wiedzy podanej na ćwiczeniach audytoryjnych lub projektowych.
3,0Student opanował podstawową wiedzę podaną na wykładzie i potrafi ją zinterpretować i wykorzystać w nieznacznym stopniu. Student opanował podstawową wiedzę podaną na ćwiczeniach audytoryjnych lub projektowych i potrafi ją zinterpretować i wykorzystać w nieznacznym stopniu.
3,5Student opanował podstawową wiedzę podaną na wykładzie i potrafi ją zinterpretować i wykorzystać w stopniu dostatecznym. Student opanował podstawową wiedzę podaną na ćwiczeniach audytoryjnych lub projektowych i potrafi ją zinterpretować i wykorzystać w stopniu dostatecznym.
4,0Student opanował większość podanych na wykładzie informacji i potrafi je zinterpretować i wykorzystać w stopniu dobrym. Student opanował większość informacjipodanych na ćwiczeniach audytoryjnych i projektowych, i potrafi je zinterpretować i wykorzystać w stopniu dobrym.
4,5Student opanował całą wiedzę podaną na wykładzie i potrafi ją właściwie zinterpretować i wykorzystać w znacznym stopniu. Student opanował całą wiedzę podaną na ćwiczeniach audytoryjnych i projektowych i potrafi ją właściwie zinterpretować i wykorzystać w znacznym stopniu.
5,0Student opanował całą wiedzę podaną na wykładzie i potrafi ją właściwie zinterpretować i w pełni wykorzystać praktycznie. Student opanował całą wiedzę podaną na ćwiczeniach audytoryjnych i projektowych i potrafi ją właściwie zinterpretować i w pełni wykorzystać praktycznie.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_C24_U01Student potrafi wykonać obliczenia dla różnego typu reaktorów chemicznych.
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_U03potrafi przygotować w języku polskim oraz języku obcym, dobrze udokumentowane opracowanie problemów z zakresu inżynierii chemicznej i procesowej, potrafi opracować dokumentację dotyczącą realizacji zadania inżynierskiego
ICHP_1A_U09potrafi wykorzystać metody analityczne, numeryczne oraz eksperymentalne do formułowania i rozwiązywania zadań inżynierskich
ICHP_1A_U16potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla inżynierii chemicznej i procesowej, wybrać i zastosować właściwą metodę wykonania oraz wybrać narzędzia
Cel przedmiotuC-2Przygotowanie studenta do prowadzenia podstawowych obliczeń projektowych różnych typów reaktorów chemicznych i biochemicznych
Treści programoweT-W-1Pojęcia podstawowe, stopień przemiany, liczba postępu reakcji, selektywność procesu, klasyfikacja reaktorów, szybkość procesu i reakcji. Kinetyka procesów homogenicznych; równania kinetyczne, zależność od temperatury, rzędowość reakcji, wyznaczanie równań kinetycznych metodą różniczkową i całkową. Obliczenia reaktorów homogenicznych: Klasyfikacja, Równania projektowe bilansu masy i energii. Reaktory okresowe izotermiczne, adiabatyczne i inne z reakcjami prostymi i złożonymi. Reaktory przepływowe, rurowe, wieżowe, zbiornikowe - równania projektowe bilansu masy i energii w reaktorach izotermicznych, adiabatycznych i innych, reakcje proste i złożone. Kaskada reaktorów zbiornikowych, reakcje proste i złożone. Reaktor cyrkulacyjny i półprzepływowy. Obliczenia reaktorów heterogenicznych: Klasyfikacja, Etapy procesów niekatalitycznych i kontaktowych. Dyfuzja zewnętrzna i wewnętrzna. Dyfuzja kapilarna i w materiałach porowatych dwu- i wieloskładnikowa. Kinetyka procesu powierzchniowego, procesów kontaktowych. Reaktory katalityczne, modele 1- i 2-wymiarowe. Równania projektowe bilansu masy i energii. Rozkłady czasów przebywania, funkcje rozkładu, ich wyznaczanie w reaktorach idealnych i rzeczywistych. Metody projektowania reaktorów rzeczywistych. Inżynieria reaktorów biochemicznych. Procesy biochemiczne, fermentacyjne, bilanse masowe, kinetyka reakcji biochemicznych, modele nie/ strukturalne, nie/ segregowane.
T-A-2Przemiany złożone – stopnie przemiany; skład mieszaniny poreakcyjnej; reakcje z kontrakcją
T-A-3Statyka chemiczna – skład równowagowy reakcji; stałe równowagowe
T-A-4Kinetyka chemiczna – rzędowość reakcji zalezność stałej szybkości reakcji od temperatury; równanie Arrheniusa
T-A-5Reaktory zbiornikowe okresowe – czas przebywania w reaktorze
T-A-6Reaktory zbiornikowe okresowe – objętość reaktora
T-A-7Reaktor rurowy przepływowy – objętość reaktora
T-A-8Reaktor zbiornikowy przepływowy – zastępczy czas przebywania, objętość przestrzeni reakcyjnej, zdolność produkcyjna
T-A-9Bioreaktory - współczynnik wydajności wzrostu biomasy, szybkość/wydajność wzrostu biomasy
T-A-1Obliczenia podstawowe: liczba reakcji liniowo niezależnych; stopnie przemiany; skład mieszaniny poreakcyjnej
Metody nauczaniaM-2Metody praktyczne - przedmiotowe ćwiczenia audytoryjne i projektowe
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie ćwiczeń audytoryjnych: dwa kolokwia pisemne; jedno w połowie semestru, drugie po zrealizowaniu materiału ćwiczeń
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi wykorzystać wiedzy teoretycznej do samodzielnego sformułowania podstawowych równań modelowych i zagadnień projektowych. Nie potrafi zastosować żadnej z podanych na wykładzie i ćwiczeniach metod obliczeniowych.
3,0Student potrafi samodzielnie sformułowac podstawowe równania modelowe. Do stworzenia właściwego modelu projektowanego reaktora i przygotowania danych niezbędnych do rozwiązania równań modelowych i projektowych potrzebuje pomocy innych.
3,5Student potrafi wykorzystać wiedzę teoretyczną i formułuje model z nieznacznymi uchybieniami. Potrafi zastosować najprostsze z podanych na wykładach i ćwiczeniach metod obliczania reaktorów chemicznych do rozwiązania danego problemu obliczeniowego i zastosowania w projektowaniu.
4,0Student potrafi samodzielnie stworzyć model matematyczny do rozwiązania zadanego problemu projektowego. W modelu i obliczeniach projektowych występują nieliczne błędy. Potrafi samodzielnie, z niewielkimi uchybieniami, przygotować dane do rozwiązania problemu.
4,5Student potrafi samodzielnie, z niewielkimi uchybieniami, stworzyć model matematyczny do rozwiązania zadanego problemu. Potrafi samodzielnie przygotować dane do rozwiązania problemu i oddaje w terminie projekt, w którym nie ma znaczących błędów.
5,0Student potrafi samodzielnie i bezbłędnie stworzyć model matematyczny do rozwiązania zadanego problemu. Potrafi samodzielnie wybrać najwłaściwszą metodę obliczeniową do rozwiązania równań modelowych reaktorów chemicznych, oddaje w terminie bezbłędny projekt reaktora.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_C24_K01Student uczy się pracy zespołowej i aktywności oraz udowadnia zdolność do stosowania nabytej wiedzy.
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_K01rozumie potrzebę dokształcania się i podnoszenia swoich kompetencji zawodowych i osobistych, motywuje do tego współpracowników
Cel przedmiotuC-2Przygotowanie studenta do prowadzenia podstawowych obliczeń projektowych różnych typów reaktorów chemicznych i biochemicznych
Treści programoweT-W-1Pojęcia podstawowe, stopień przemiany, liczba postępu reakcji, selektywność procesu, klasyfikacja reaktorów, szybkość procesu i reakcji. Kinetyka procesów homogenicznych; równania kinetyczne, zależność od temperatury, rzędowość reakcji, wyznaczanie równań kinetycznych metodą różniczkową i całkową. Obliczenia reaktorów homogenicznych: Klasyfikacja, Równania projektowe bilansu masy i energii. Reaktory okresowe izotermiczne, adiabatyczne i inne z reakcjami prostymi i złożonymi. Reaktory przepływowe, rurowe, wieżowe, zbiornikowe - równania projektowe bilansu masy i energii w reaktorach izotermicznych, adiabatycznych i innych, reakcje proste i złożone. Kaskada reaktorów zbiornikowych, reakcje proste i złożone. Reaktor cyrkulacyjny i półprzepływowy. Obliczenia reaktorów heterogenicznych: Klasyfikacja, Etapy procesów niekatalitycznych i kontaktowych. Dyfuzja zewnętrzna i wewnętrzna. Dyfuzja kapilarna i w materiałach porowatych dwu- i wieloskładnikowa. Kinetyka procesu powierzchniowego, procesów kontaktowych. Reaktory katalityczne, modele 1- i 2-wymiarowe. Równania projektowe bilansu masy i energii. Rozkłady czasów przebywania, funkcje rozkładu, ich wyznaczanie w reaktorach idealnych i rzeczywistych. Metody projektowania reaktorów rzeczywistych. Inżynieria reaktorów biochemicznych. Procesy biochemiczne, fermentacyjne, bilanse masowe, kinetyka reakcji biochemicznych, modele nie/ strukturalne, nie/ segregowane.
T-A-2Przemiany złożone – stopnie przemiany; skład mieszaniny poreakcyjnej; reakcje z kontrakcją
T-A-3Statyka chemiczna – skład równowagowy reakcji; stałe równowagowe
T-A-4Kinetyka chemiczna – rzędowość reakcji zalezność stałej szybkości reakcji od temperatury; równanie Arrheniusa
T-A-5Reaktory zbiornikowe okresowe – czas przebywania w reaktorze
T-A-6Reaktory zbiornikowe okresowe – objętość reaktora
T-A-7Reaktor rurowy przepływowy – objętość reaktora
T-A-8Reaktor zbiornikowy przepływowy – zastępczy czas przebywania, objętość przestrzeni reakcyjnej, zdolność produkcyjna
T-A-9Bioreaktory - współczynnik wydajności wzrostu biomasy, szybkość/wydajność wzrostu biomasy
T-A-1Obliczenia podstawowe: liczba reakcji liniowo niezależnych; stopnie przemiany; skład mieszaniny poreakcyjnej
Metody nauczaniaM-2Metody praktyczne - przedmiotowe ćwiczenia audytoryjne i projektowe
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie ćwiczeń audytoryjnych: dwa kolokwia pisemne; jedno w połowie semestru, drugie po zrealizowaniu materiału ćwiczeń
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi współpracować z grupą w zakresie obliczeń reaktorowych i nie wykonuje poleceń lidera.
3,0Student potrafi w dostatecznym stopniu myśleć i działać grupowo w dziedzinie inzynierii reaktorów chemicznych. Student zauważa ważność obliczeń bilansowych dla reaktorów chemicznych, ale nie potrafi przedstawić tego na wybranym przykładzie.
3,5Student wykonuje niektóre polecenia lidera. Chętnie współpracuje z pozostałymi członkami grupy w zakresie obliczeń reaktorowych.
4,0Student dokładnie wykonuje polecenia lidera i współpracuje z pozostałymi członkami grupy w sposób kreatywny i innowacyjny.
4,5Student potrafi współpracować z liderem a w razie potrzeby go kreatywnie zastąpić w zakresie zagadnień reaktorowych.
5,0Student jest liderem doskonale kierującym grupą i potrafi wykorzystać potencjał każdego z członków grupy.