Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Technologii i Inżynierii Chemicznej - Inżynieria chemiczna i procesowa (N2)
specjalność: Inżynieria procesów przeróbki ropy naftowej i gazu

Sylabus przedmiotu Komputerowe modelowanie bioprocesów:

Informacje podstawowe

Kierunek studiów Inżynieria chemiczna i procesowa
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Komputerowe modelowanie bioprocesów
Specjalność Inżynieria bioprocesowa
Jednostka prowadząca Katedra Inżynierii Chemicznej i Procesowej
Nauczyciel odpowiedzialny Jolanta Szoplik <Jolanta.Szoplik@zut.edu.pl>
Inni nauczyciele Marta Major-Godlewska <Marta.Major@zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL2 18 2,01,00zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Bioprocesy i aparaty

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie Studentów z metodami stosowanymi przy modelowaniu bioprocesów
C-2Ukształtowanie u Studentów umiejętności komputerowego modelowania bioprocesów w zakresie objętym treściami programowymi.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Analiza kosztów usuwania zanieczyszczeń w procesie biochemicznym2
T-L-2Matematyczne modelowanie procesu biochemicznego w bioreaktorze typu UASB2
T-L-3Sedymentacja wtórna w instalacji oczyszczania ścieków metodą osadu czynnego2
T-L-4Zapotrzebowanie tlenu w komorze napowietrzania instalacji oczyszczania ścieków metodą osadu czynnego2
T-L-5Matematyczne modelowanie procesu biochemicznego w reaktorach o działaniu ciągłym2
T-L-6Matematyczne modelowanie procesu biochemicznego w dwustopniowym reaktorze o działaniu ciągłym z recyrkulacją2
T-L-7Kinetyka wzrostu mikroorganizmów i szybkość wytwarzania bioproduktu w reaktorze przepływowym2
T-L-8Analiza optymalnych warunków otrzymywania bioproduktu w reaktorach o działaniu ciągłym i okresowym2
T-L-9Powiększanie skali bioreaktora2
18

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w zajęciach18
A-L-2Przygotowanie do zajęć10
A-L-3Wykonanie obliczeń i przygotowywanie sprawozdania z ćwiczenia22
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Laboratoria komputerowe

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Zaliczenie każdego ćwiczenia
S-2Ocena podsumowująca: Średnia ocena z wszystkich ćwiczeń komputerowych

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_2A_C02-11_W01
Student ma szczegółową wiedzę związaną z modelowaniem bioprocesów w zakresie specjalności inżynieria bioprocesowa
ICHP_2A_W06C-1, C-2T-L-2, T-L-3, T-L-1, T-L-8, T-L-4, T-L-5, T-L-6, T-L-7, T-L-9M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_2A_C02-11_U01
Student potrafi wybranymi metodami modelować przykładowe bioprocesy, specyficzne dla specjalności Inżynieria bioprocesowa
ICHP_2A_U17C-2T-L-2, T-L-3, T-L-1, T-L-8, T-L-4, T-L-5, T-L-6, T-L-7, T-L-9M-1S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_2A_C02-11_K01
Student ma świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego w zakresie modelowania bioprocesów
ICHP_2A_K01C-1, C-2T-L-2, T-L-3, T-L-1, T-L-8, T-L-4, T-L-5, T-L-6, T-L-7, T-L-9M-1S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
ICHP_2A_C02-11_W01
Student ma szczegółową wiedzę związaną z modelowaniem bioprocesów w zakresie specjalności inżynieria bioprocesowa
2,0Student nie ma wymaganej wiedzy związanej z komputerowym modelowaniem bioprocesów
3,0Student ma bardzo podstawową wiedzę w zakresie komputerowego modelowania bioprocesów.
3,5Student ma dostateczną wiedzę na temat komputerowego modelowania bioprocesów.
4,0Student ma dobrą wiedzę na temat komputerowego modelowania bioprocesów.
4,5Student ma dość dobrą wiedzę na temat metod komputerowego modelowania bioprocesów.
5,0Student ma bardzo dobrą, szeroką i popartą licznymi przykładami wiedzę na temat metod komputerowego modelowania bioprocesów.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
ICHP_2A_C02-11_U01
Student potrafi wybranymi metodami modelować przykładowe bioprocesy, specyficzne dla specjalności Inżynieria bioprocesowa
2,0Student nie potrafi modelować bioprocesów.
3,0Student potrafi poprawnie modelować tylko proste bioprocesy.
3,5Student potrafi poprawnie modelować ćwiczone na zajęciach przykłady bioprocesów.
4,0Student potrafi dobrze modelować przykładowe bioprocesy, specyficzne dla specjalności inżynieria bioprocesowa.
4,5Student potrafi dobrze modelować przykładowe bioprocesy, specyficzne dla specjalności inżynieria bioprocesowa oraz potrafi przeprowadzić prostą analizę uzyskanych wyników.
5,0Student potrafi bardzo dobrze modelować przykładowe bioprocesy, specyficzne dla specjalności inżynieria bioprocesowa oraz potrafi przeprowadzić analizę uzyskanych wyników.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
ICHP_2A_C02-11_K01
Student ma świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego w zakresie modelowania bioprocesów
2,0Student nie ma świadomości potrzeby dokształcania zawodowego w zakresie modelowania bioprocesów.
3,0Student jest dostatecznie świadomy potrzeby dokształcania zawodowego w zakresie modelowania bioprocesów.
3,5Student ma przeciętną świadomość potrzeby dokształcania zawodowego w zakresie modelowania bioprocesów.
4,0Student w szerokim stopniu rozumie potrzebę dokształcania zawodowego w zakresie modelowania bioprocesów.
4,5Student ma dobrą świadomość potrzeby dokształcania zawodowego w zakresie modelowania bioprocesów i chętnie zapoznaje się z nowymi materiałami, poleconymi przez prowadzącego zajęcia.
5,0Student ma bardzo dobrą świadomość potrzeby dokształcania zawodowego w zakresie modelowania bioprocesów, jest aktywny oraz samodzielnie zdobywa i przyswaja nowe informacje.

Literatura podstawowa

  1. Kafarow W.W., Winarow A.J., Gordiejew L.S., Modelowanie reaktorów biochemicznych, WNT, Warszawa, 1983
  2. Viesturs V.E., Kuzniecow A.M., Sawienkow W.W., Bioreaktory. Zasady obliczeń i doboru., WNT, Warszawa, 1990
  3. Schugerl K., Bioreaction engineering, John Wiley & Sons, New York, 1990
  4. Shuler M.L., Kargi F., Bioprocess Engineering. Basic concept, Prentice Hall, 1992
  5. Buraczewski G., Biotechnologia osadu czynnego, PWN, Warszawa, 1994
  6. Buraczewski G., Fermentacja metanowa, PWN, Warszawa, 1989
  7. Szewczyk K.W., Bilansowanie i kineteyka procesów biochemicznych, Wydawnictwa Politechniki Warszawskiej, Warszawa, 1993

Literatura dodatkowa

  1. Aiba S., Humphrey E., Millis N.F., Inżynieria biochemiczna, WNT, Warszawa, 1970

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Analiza kosztów usuwania zanieczyszczeń w procesie biochemicznym2
T-L-2Matematyczne modelowanie procesu biochemicznego w bioreaktorze typu UASB2
T-L-3Sedymentacja wtórna w instalacji oczyszczania ścieków metodą osadu czynnego2
T-L-4Zapotrzebowanie tlenu w komorze napowietrzania instalacji oczyszczania ścieków metodą osadu czynnego2
T-L-5Matematyczne modelowanie procesu biochemicznego w reaktorach o działaniu ciągłym2
T-L-6Matematyczne modelowanie procesu biochemicznego w dwustopniowym reaktorze o działaniu ciągłym z recyrkulacją2
T-L-7Kinetyka wzrostu mikroorganizmów i szybkość wytwarzania bioproduktu w reaktorze przepływowym2
T-L-8Analiza optymalnych warunków otrzymywania bioproduktu w reaktorach o działaniu ciągłym i okresowym2
T-L-9Powiększanie skali bioreaktora2
18

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach18
A-L-2Przygotowanie do zajęć10
A-L-3Wykonanie obliczeń i przygotowywanie sprawozdania z ćwiczenia22
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_2A_C02-11_W01Student ma szczegółową wiedzę związaną z modelowaniem bioprocesów w zakresie specjalności inżynieria bioprocesowa
Odniesienie do efektów kształcenia dla kierunku studiówICHP_2A_W06ma podbudowaną teoretycznie szczegółową wiedzę związaną z kluczowymi zagadnieniami inżynierii chemicznej i procesowej w zakresie ukończonej specjalności
Cel przedmiotuC-1Zapoznanie Studentów z metodami stosowanymi przy modelowaniu bioprocesów
C-2Ukształtowanie u Studentów umiejętności komputerowego modelowania bioprocesów w zakresie objętym treściami programowymi.
Treści programoweT-L-2Matematyczne modelowanie procesu biochemicznego w bioreaktorze typu UASB
T-L-3Sedymentacja wtórna w instalacji oczyszczania ścieków metodą osadu czynnego
T-L-1Analiza kosztów usuwania zanieczyszczeń w procesie biochemicznym
T-L-8Analiza optymalnych warunków otrzymywania bioproduktu w reaktorach o działaniu ciągłym i okresowym
T-L-4Zapotrzebowanie tlenu w komorze napowietrzania instalacji oczyszczania ścieków metodą osadu czynnego
T-L-5Matematyczne modelowanie procesu biochemicznego w reaktorach o działaniu ciągłym
T-L-6Matematyczne modelowanie procesu biochemicznego w dwustopniowym reaktorze o działaniu ciągłym z recyrkulacją
T-L-7Kinetyka wzrostu mikroorganizmów i szybkość wytwarzania bioproduktu w reaktorze przepływowym
T-L-9Powiększanie skali bioreaktora
Metody nauczaniaM-1Laboratoria komputerowe
Sposób ocenyS-1Ocena formująca: Zaliczenie każdego ćwiczenia
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma wymaganej wiedzy związanej z komputerowym modelowaniem bioprocesów
3,0Student ma bardzo podstawową wiedzę w zakresie komputerowego modelowania bioprocesów.
3,5Student ma dostateczną wiedzę na temat komputerowego modelowania bioprocesów.
4,0Student ma dobrą wiedzę na temat komputerowego modelowania bioprocesów.
4,5Student ma dość dobrą wiedzę na temat metod komputerowego modelowania bioprocesów.
5,0Student ma bardzo dobrą, szeroką i popartą licznymi przykładami wiedzę na temat metod komputerowego modelowania bioprocesów.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_2A_C02-11_U01Student potrafi wybranymi metodami modelować przykładowe bioprocesy, specyficzne dla specjalności Inżynieria bioprocesowa
Odniesienie do efektów kształcenia dla kierunku studiówICHP_2A_U17potrafi przeanalizować proste i złożone zadania inżynierskie, specyficzne dla studiowanej specjalności, w tym zagadnienia nietypowe, uwzględniając ich aspekty pozatechniczne
Cel przedmiotuC-2Ukształtowanie u Studentów umiejętności komputerowego modelowania bioprocesów w zakresie objętym treściami programowymi.
Treści programoweT-L-2Matematyczne modelowanie procesu biochemicznego w bioreaktorze typu UASB
T-L-3Sedymentacja wtórna w instalacji oczyszczania ścieków metodą osadu czynnego
T-L-1Analiza kosztów usuwania zanieczyszczeń w procesie biochemicznym
T-L-8Analiza optymalnych warunków otrzymywania bioproduktu w reaktorach o działaniu ciągłym i okresowym
T-L-4Zapotrzebowanie tlenu w komorze napowietrzania instalacji oczyszczania ścieków metodą osadu czynnego
T-L-5Matematyczne modelowanie procesu biochemicznego w reaktorach o działaniu ciągłym
T-L-6Matematyczne modelowanie procesu biochemicznego w dwustopniowym reaktorze o działaniu ciągłym z recyrkulacją
T-L-7Kinetyka wzrostu mikroorganizmów i szybkość wytwarzania bioproduktu w reaktorze przepływowym
T-L-9Powiększanie skali bioreaktora
Metody nauczaniaM-1Laboratoria komputerowe
Sposób ocenyS-1Ocena formująca: Zaliczenie każdego ćwiczenia
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi modelować bioprocesów.
3,0Student potrafi poprawnie modelować tylko proste bioprocesy.
3,5Student potrafi poprawnie modelować ćwiczone na zajęciach przykłady bioprocesów.
4,0Student potrafi dobrze modelować przykładowe bioprocesy, specyficzne dla specjalności inżynieria bioprocesowa.
4,5Student potrafi dobrze modelować przykładowe bioprocesy, specyficzne dla specjalności inżynieria bioprocesowa oraz potrafi przeprowadzić prostą analizę uzyskanych wyników.
5,0Student potrafi bardzo dobrze modelować przykładowe bioprocesy, specyficzne dla specjalności inżynieria bioprocesowa oraz potrafi przeprowadzić analizę uzyskanych wyników.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_2A_C02-11_K01Student ma świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego w zakresie modelowania bioprocesów
Odniesienie do efektów kształcenia dla kierunku studiówICHP_2A_K01posiada świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego, potrafi inspirować i organizować proces uczenia się innych osób
Cel przedmiotuC-1Zapoznanie Studentów z metodami stosowanymi przy modelowaniu bioprocesów
C-2Ukształtowanie u Studentów umiejętności komputerowego modelowania bioprocesów w zakresie objętym treściami programowymi.
Treści programoweT-L-2Matematyczne modelowanie procesu biochemicznego w bioreaktorze typu UASB
T-L-3Sedymentacja wtórna w instalacji oczyszczania ścieków metodą osadu czynnego
T-L-1Analiza kosztów usuwania zanieczyszczeń w procesie biochemicznym
T-L-8Analiza optymalnych warunków otrzymywania bioproduktu w reaktorach o działaniu ciągłym i okresowym
T-L-4Zapotrzebowanie tlenu w komorze napowietrzania instalacji oczyszczania ścieków metodą osadu czynnego
T-L-5Matematyczne modelowanie procesu biochemicznego w reaktorach o działaniu ciągłym
T-L-6Matematyczne modelowanie procesu biochemicznego w dwustopniowym reaktorze o działaniu ciągłym z recyrkulacją
T-L-7Kinetyka wzrostu mikroorganizmów i szybkość wytwarzania bioproduktu w reaktorze przepływowym
T-L-9Powiększanie skali bioreaktora
Metody nauczaniaM-1Laboratoria komputerowe
Sposób ocenyS-1Ocena formująca: Zaliczenie każdego ćwiczenia
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma świadomości potrzeby dokształcania zawodowego w zakresie modelowania bioprocesów.
3,0Student jest dostatecznie świadomy potrzeby dokształcania zawodowego w zakresie modelowania bioprocesów.
3,5Student ma przeciętną świadomość potrzeby dokształcania zawodowego w zakresie modelowania bioprocesów.
4,0Student w szerokim stopniu rozumie potrzebę dokształcania zawodowego w zakresie modelowania bioprocesów.
4,5Student ma dobrą świadomość potrzeby dokształcania zawodowego w zakresie modelowania bioprocesów i chętnie zapoznaje się z nowymi materiałami, poleconymi przez prowadzącego zajęcia.
5,0Student ma bardzo dobrą świadomość potrzeby dokształcania zawodowego w zakresie modelowania bioprocesów, jest aktywny oraz samodzielnie zdobywa i przyswaja nowe informacje.