Wydział Technologii i Inżynierii Chemicznej - Chemical Engineering (S1)
Sylabus przedmiotu Chemical Reactor Engineering:
Informacje podstawowe
Kierunek studiów | Chemical Engineering | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Chemical Reactor Engineering | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Inżynierii Chemicznej i Procesowej | ||
Nauczyciel odpowiedzialny | Halina Murasiewicz <Halina.Murasiewicz@zut.edu.pl> | ||
Inni nauczyciele | Maciej Konopacki <mkonopacki@zut.edu.pl>, Krzysztof Lubkowski <Krzysztof.Lubkowski@zut.edu.pl>, Halina Murasiewicz <Halina.Murasiewicz@zut.edu.pl>, Paulina Pianko-Oprych <Paulina.Pianko@zut.edu.pl>, Rafał Rakoczy <Rafal.Rakoczy@zut.edu.pl> | ||
ECTS (planowane) | 5,0 | ECTS (formy) | 5,0 |
Forma zaliczenia | zaliczenie | Język | angielski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Mathematics |
W-2 | Physics |
W-3 | Thermodynamics |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Fundamentals of chemical reaction engineering. Rate laws, kinetics, and mechanisms of homogeneous and heterogeneous reactions. Analysis of rate data, multiple reactions, heat effects, bioreactors. Design of industrial reactors. Chemical Reaction Engineering (CRE) is the core subject in the specialties of Chemical Engineering and Technology. It mainly involves the study on industrial-scale chemical processes including chemical reaction rate, materials balance, and influences of macro-engineering factors. The objectives are to achieve the optimization control on industrial reaction process, and reactor development, design and scaling-up. Chemical reaction engineering is also concerned with the exploitation of chemical reactions on a commercial scale. Its tasks are to make students grasp the knowledge as follows: (i) thermodynamics, (ii) kinetics, (iii) transport processes, (iv) types of reactors, (v) operation mode and contacting, (vi) modeling and optimization, and (vii) control. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Practical study of batch reactor | 8 |
T-L-2 | Practical study of continous reactor | 7 |
15 | ||
projekty | ||
T-P-1 | Calculation of chosen type of reactor - part 1. | 15 |
T-P-2 | Calculation of bioreactor - part 2. | 15 |
30 | ||
wykłady | ||
T-W-1 | Stoichiometry of elementary and complex reactions. Mole balances, conversions and desig equation. Kinetic rate laws. Single chemical reaction and multiple reactions (reversible, consecutive, parallel).Types of reactor: Batch Reactor, RB, Continuous Stirred-Tank Reactor, CSTR, continuous Plug-Flow Reactor, PFR. Multiple reactions, yield and selectivity. Analysis of reactor performance data. | 30 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Participation in laboratories. | 15 |
A-L-2 | Preparation for labs. | 10 |
25 | ||
projekty | ||
A-P-1 | Participation in project classes. | 30 |
A-P-2 | Independent execution of design calculations | 8 |
38 | ||
wykłady | ||
A-W-1 | Participation in lecture | 30 |
A-W-2 | Preparation to the lecture | 20 |
A-W-3 | Independent study of the subject matter of the classes | 11 |
A-W-4 | Consultations | 2 |
63 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Preparation of a multimedia for of lecture presentation |
M-2 | Project method. |
M-3 | Demonstration of the chosen type of reactor. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Written final exam based on the lecture contents. |
S-2 | Ocena formująca: Project report - part 1. |
S-3 | Ocena formująca: Project report - part 2. |
S-4 | Ocena podsumowująca: Written test and laboratory reports |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ChEn_1A_C11_W01 Student is able to define fundamentals of chemical reactions. Student can analyze models of reactors and is able to explain the used chemical reactors construction and select an appropriate type of reactor for specific needs. | ChEn_1A_W04, ChEn_1A_W06, ChEn_1A_W10, ChEn_1A_W11, ChEn_1A_W14 | — | — | C-1 | T-W-1 | M-1 | S-1 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ChEn_1A_C11_U01 Student can propose and calculte chemical reaction kinetics. Student is able to perform calculations for chosen types of reactors: Batch Reactor, Continuous Stirred Tank Reactor, Plug Flow Reactor. | ChEn_1A_U03, ChEn_1A_U05, ChEn_1A_U08, ChEn_1A_U16, ChEn_1A_U07, ChEn_1A_U01 | — | — | C-1 | T-P-1, T-P-2, T-L-2, T-L-1 | M-2 | S-3, S-2, S-4 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ChEn_1A_C11_K01 Student can present and defence the role of chosen chemical reactor design. Student can demonstrate ability to take responsibility and collaborate with others when working in a team during the labs. | ChEn_1A_K04, ChEn_1A_K05, ChEn_1A_K01, ChEn_1A_K03 | — | — | C-1 | T-L-1, T-L-2 | M-3 | S-4 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ChEn_1A_C11_W01 Student is able to define fundamentals of chemical reactions. Student can analyze models of reactors and is able to explain the used chemical reactors construction and select an appropriate type of reactor for specific needs. | 2,0 | Unacceptable understanding of course material. |
3,0 | Serious deficiencies in understanding the core subject material. | |
3,5 | Some deficiencies in understanding the subject material. | |
4,0 | Some deficiencies in understanding the core subject material. | |
4,5 | Some mild deficiencies in Mastery of subject material. | |
5,0 | Complete Mastery of subject material. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ChEn_1A_C11_U01 Student can propose and calculte chemical reaction kinetics. Student is able to perform calculations for chosen types of reactors: Batch Reactor, Continuous Stirred Tank Reactor, Plug Flow Reactor. | 2,0 | Unacceptable understanding of course material. |
3,0 | Serious deficiencies in understanding the core subject material. | |
3,5 | Some deficiencies in understanding the subject material. | |
4,0 | Some deficiencies in understanding the core subject material. | |
4,5 | Some mild deficiencies in Mastery of subject material. | |
5,0 | Complete Mastery of subject material. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ChEn_1A_C11_K01 Student can present and defence the role of chosen chemical reactor design. Student can demonstrate ability to take responsibility and collaborate with others when working in a team during the labs. | 2,0 | Unacceptable understanding of course material. |
3,0 | Serious deficiencies in understanding the core subject material. | |
3,5 | Some deficiencies in understanding the subject material. | |
4,0 | Some deficiencies in understanding the core subject material. | |
4,5 | Some mild deficiencies in Mastery of subject material. | |
5,0 | Complete Mastery of subject material. |
Literatura podstawowa
- Fogler, H. S., Elements of Chemical Reaction Engineering, Prentice-Hall PTR, 2006, 9780130473943, Upper Saddle River
- Levenspiel O., Chemical Reaction Engineering, Wiley, New York, 1999, 9780471254249
- Steinfeld, J. I., J. S. Francisco, and W. L. Hase., Chemical Kinetics and Dynamics, Prentice Hall, 1999, 9780137371235
Literatura dodatkowa
- E. B. Nauman, Chemical Reactor Design, Optimization, and Scale-up, John Wiley and Sons, USA, 2008
- L.M. Rose, Chemical Reactor Design in Practice, Elsevier Scientific Publishing Company, New York, 1981