Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Techniki Morskiej i Transportu - Bezpieczeństwo techniczne (S1)
specjalność: Bezpieczeństwo systemów

Sylabus przedmiotu Informatyka 2:

Informacje podstawowe

Kierunek studiów Bezpieczeństwo techniczne
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Informatyka 2
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Klimatyzacji i Transportu Chłodniczego
Nauczyciel odpowiedzialny Piotr Nikończuk <Piotr.Nikonczuk@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL4 30 2,01,00zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowe umiejętności obsługi komputera

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Umiejętność rozwiązania prostego problemu obliczeniowego za pomocą oprogramowania inżynierskiego Matlab lub MathCad
C-2Umiejętność modelowania procesów i zjawisk za pomocą sztucznych sieci neuronowych
C-3Umiejętność rozwiązania zadania optymalizacji z użyciem algorytmów genetycznych

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Programowanie w Matlab. Tworzenie programów w Matlab. Tworzenie własnych funkcji.8
T-L-2Metody sztucznej inteligencji - algorytmy genetyczne3
T-L-3Metody Sztucznej inteligencji. Sieci neuronowe.3
T-L-4Realizacja wybranych zadań inżynierskich z wykorzystaniem programu Matlab14
T-L-5Zaliczenie przedmiotu2
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w zajęciach30
A-L-2Przygotowanie się do zajęć10
A-L-3Studiowanie literatury5
A-L-4Przygotowanie się do zaliczenia5
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Ćwiczenia laboratoryjne - rozwiązywanie zadań z użyciem oprgramowania do zastosowań inżynierskich

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Zaliczenie z użyciem komputera

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BTE_1A_B11_W01
Ma widzę dotyczącą rzowiązywania problemów technicznych z zastosowaniem nartzędzi informatycznych
BTE_1A_W10C-2, C-3, C-1T-L-3, T-L-1, T-L-2, T-L-4M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BTE_1A_B11_U01
Potrafi modelować i optymalzować procesy lub zjawiska za pmocą sztucznej inteligencji. Potrafi rozwiązać problem obliczeniowy za pmocą oprogramowania Matlab lub Mathcad.
BTE_1A_U14C-2, C-3, C-1T-L-3, T-L-1, T-L-2, T-L-4M-1S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BTE_1A_B11_K01
Jest w stanie uaktualniać swoją wiedzę i umiejętności z zakresu narzędzi IT aby rozwiązywać zadania inżynierskie w danej dziedzinie techniki
BTE_1A_K01C-2, C-3, C-1T-L-3, T-L-1, T-L-2, T-L-4M-1S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
BTE_1A_B11_W01
Ma widzę dotyczącą rzowiązywania problemów technicznych z zastosowaniem nartzędzi informatycznych
2,0
3,0Ma podstawową wiedzę w zakresie doboru odpowiednich narzędzi informatycznych do rozwiązywania prostych zadań inżynierskich
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
BTE_1A_B11_U01
Potrafi modelować i optymalzować procesy lub zjawiska za pmocą sztucznej inteligencji. Potrafi rozwiązać problem obliczeniowy za pmocą oprogramowania Matlab lub Mathcad.
2,0
3,0Potrafi zamodelować proste zjawisko za pomocą sztucznych sieci neuronowych. Poreafi przeprowadzić optymalizację prostego problemu za pomocą algorytmów genetyczych,. Potraforozwiązać prosty problem obliczeniowy za pomocą oprogramowania Matlab.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
BTE_1A_B11_K01
Jest w stanie uaktualniać swoją wiedzę i umiejętności z zakresu narzędzi IT aby rozwiązywać zadania inżynierskie w danej dziedzinie techniki
2,0
3,0Jest w stanie dbrać odpowiednie narzędzie informatyczne do rozwiązywania prostego zadania inżynierskiego.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Tadeusiewicz R., Gąciarz T., Borowik B., Leper B., Odkrywanie właściwości sztucznych sieci neuronowych przy użyciu programów w języku C#, Polska Akademia Umiejętności, Kraków, 2007
  2. Nocoń A., Metody CAD i AI w inżynierii elektrycznej Wybór przykładów z zastosowaniem programu MATLAB, Wydawnictwo Naukowe PWN, Warszawa, 2018, Wydanie 1
  3. Rutkowski L., Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe PWN, Warszawa, 2005

Literatura dodatkowa

  1. Michalewicz Z., Algorytmy genetyczne + struktury danych = programy ewolucyjne, Wydawnictwa Naukowo Techniczne, Warszawa, 1999, 2
  2. Osowski S., Sieci neuronowe w ujęciu algorytmicznym, Wydawnictwa Naukowo Techniczne, Warszawa, 1996, 2
  3. Brzózka J., Dorobczyński L., Programowanie w Matlab, MIKOM, Warszawa, 1999

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Programowanie w Matlab. Tworzenie programów w Matlab. Tworzenie własnych funkcji.8
T-L-2Metody sztucznej inteligencji - algorytmy genetyczne3
T-L-3Metody Sztucznej inteligencji. Sieci neuronowe.3
T-L-4Realizacja wybranych zadań inżynierskich z wykorzystaniem programu Matlab14
T-L-5Zaliczenie przedmiotu2
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach30
A-L-2Przygotowanie się do zajęć10
A-L-3Studiowanie literatury5
A-L-4Przygotowanie się do zaliczenia5
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięBTE_1A_B11_W01Ma widzę dotyczącą rzowiązywania problemów technicznych z zastosowaniem nartzędzi informatycznych
Odniesienie do efektów kształcenia dla kierunku studiówBTE_1A_W10ma elementarną wiedzę niezbędną do korzystania z sieci komputerowych i aplikacji sieciowych oraz dotyczącą komputerowego wspomagania podczas rozwiązywania problemów technicznych i organizacyjnych występujących w obszarze zagadnień bezpieczeństwa technicznego
Cel przedmiotuC-2Umiejętność modelowania procesów i zjawisk za pomocą sztucznych sieci neuronowych
C-3Umiejętność rozwiązania zadania optymalizacji z użyciem algorytmów genetycznych
C-1Umiejętność rozwiązania prostego problemu obliczeniowego za pomocą oprogramowania inżynierskiego Matlab lub MathCad
Treści programoweT-L-3Metody Sztucznej inteligencji. Sieci neuronowe.
T-L-1Programowanie w Matlab. Tworzenie programów w Matlab. Tworzenie własnych funkcji.
T-L-2Metody sztucznej inteligencji - algorytmy genetyczne
T-L-4Realizacja wybranych zadań inżynierskich z wykorzystaniem programu Matlab
Metody nauczaniaM-1Ćwiczenia laboratoryjne - rozwiązywanie zadań z użyciem oprgramowania do zastosowań inżynierskich
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie z użyciem komputera
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Ma podstawową wiedzę w zakresie doboru odpowiednich narzędzi informatycznych do rozwiązywania prostych zadań inżynierskich
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięBTE_1A_B11_U01Potrafi modelować i optymalzować procesy lub zjawiska za pmocą sztucznej inteligencji. Potrafi rozwiązać problem obliczeniowy za pmocą oprogramowania Matlab lub Mathcad.
Odniesienie do efektów kształcenia dla kierunku studiówBTE_1A_U14potrafi rozwiązać zadanie inżynierskie wykorzystując metody analityczne, symulacyjne oraz eksperymentalne
Cel przedmiotuC-2Umiejętność modelowania procesów i zjawisk za pomocą sztucznych sieci neuronowych
C-3Umiejętność rozwiązania zadania optymalizacji z użyciem algorytmów genetycznych
C-1Umiejętność rozwiązania prostego problemu obliczeniowego za pomocą oprogramowania inżynierskiego Matlab lub MathCad
Treści programoweT-L-3Metody Sztucznej inteligencji. Sieci neuronowe.
T-L-1Programowanie w Matlab. Tworzenie programów w Matlab. Tworzenie własnych funkcji.
T-L-2Metody sztucznej inteligencji - algorytmy genetyczne
T-L-4Realizacja wybranych zadań inżynierskich z wykorzystaniem programu Matlab
Metody nauczaniaM-1Ćwiczenia laboratoryjne - rozwiązywanie zadań z użyciem oprgramowania do zastosowań inżynierskich
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie z użyciem komputera
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Potrafi zamodelować proste zjawisko za pomocą sztucznych sieci neuronowych. Poreafi przeprowadzić optymalizację prostego problemu za pomocą algorytmów genetyczych,. Potraforozwiązać prosty problem obliczeniowy za pomocą oprogramowania Matlab.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięBTE_1A_B11_K01Jest w stanie uaktualniać swoją wiedzę i umiejętności z zakresu narzędzi IT aby rozwiązywać zadania inżynierskie w danej dziedzinie techniki
Odniesienie do efektów kształcenia dla kierunku studiówBTE_1A_K01ma świadomość swojej wiedzy i umiejętności, potrzebnej do rozwiązywania problemów poznawczych i praktycznych powstających w pracy zawodowej, rozumie potrzebę i zna możliwości ciągłego dokształcania się i samodoskonalenia.
Cel przedmiotuC-2Umiejętność modelowania procesów i zjawisk za pomocą sztucznych sieci neuronowych
C-3Umiejętność rozwiązania zadania optymalizacji z użyciem algorytmów genetycznych
C-1Umiejętność rozwiązania prostego problemu obliczeniowego za pomocą oprogramowania inżynierskiego Matlab lub MathCad
Treści programoweT-L-3Metody Sztucznej inteligencji. Sieci neuronowe.
T-L-1Programowanie w Matlab. Tworzenie programów w Matlab. Tworzenie własnych funkcji.
T-L-2Metody sztucznej inteligencji - algorytmy genetyczne
T-L-4Realizacja wybranych zadań inżynierskich z wykorzystaniem programu Matlab
Metody nauczaniaM-1Ćwiczenia laboratoryjne - rozwiązywanie zadań z użyciem oprgramowania do zastosowań inżynierskich
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie z użyciem komputera
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Jest w stanie dbrać odpowiednie narzędzie informatyczne do rozwiązywania prostego zadania inżynierskiego.
3,5
4,0
4,5
5,0