Wydział Inżynierii Mechanicznej i Mechatroniki - Zarządzanie i inżynieria produkcji (S1)
Sylabus przedmiotu Mechanika I:
Informacje podstawowe
Kierunek studiów | Zarządzanie i inżynieria produkcji | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Mechanika I | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Mechaniki | ||
Nauczyciel odpowiedzialny | Magdalena Urbaniak <Magdalena.Urbaniak@zut.edu.pl> | ||
Inni nauczyciele | Artur Bajwoluk <Artur.Bajwoluk@zut.edu.pl>, Paweł Gutowski <Pawel.Gutowski@zut.edu.pl>, Mariusz Leus <Mariusz.Leus@zut.edu.pl>, Marta Rybkiewicz <Marta.Abrahamowicz@zut.edu.pl> | ||
ECTS (planowane) | 5,0 | ECTS (formy) | 5,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Podstawy matematyki - w tym podstawy rachunku różniczkowego i całkowego |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studentów z podstawami mechaniki ogólnej. |
C-2 | Ukształtowanie umiejętności prowadzenia analizy statycznej prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze oraz ukształtowanie umiejętności opisu i analizy ruchu punktu oraz prostych przypadków ruchu bryły sztywnej |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | Płaski zbieżny układ sił - metoda geometryczna. Płaski zbieżny układ sił - metoda analityczna (równania równowagi). Moment siły względem punktu. Płaski dowolny układ sił - równania równowagi. Płaski dowolny układ sił i płaski układ sił równoległych - równania równowagi. Tarcie ślizgowe i prawa tarcia. Opory przy toczeniu się ciał. Przestrzenny zbieżny układ sił. Moment siły względem osi. Przestrzenny dowolny układ sił. Środki ciężkości - obliczenia i wydanie pracy domowej. Kinematyka punktu - równania ruchu, prędkości i przyspieszenia. Ruch obrotowy i ruch płaski ciała sztywnego. Przekazywanie ruchów. Dynamika punktu. Dynamika ruchu obrotowego. | 28 |
T-A-2 | Zaliczenie | 2 |
30 | ||
wykłady | ||
T-W-1 | Pojęcia podstawowe z mechaniki. Prawa Newtona. Jednostki siły. Zasady statyki. Więzy i ich reakcje. Płaski zbieżny układ sił. Wypadkowa sił zbieżnych. Równowaga płaskiego układu sił zbieżnych. Twierdzenie o równowadze trzech sił. Równania równowagi płaskiego układu sił zbieżnych. Moment siły względem punktu. Para sił i moment pary sił. Redukcja sił działających w jednej płaszczyźnie do siły i pary sił. Równania równowagi dla płaskiego dowolnego układu sił. Tarcie i prawa tarcia. Przestrzenny zbieżny układ sił - równania równowagi. Moment siły względem osi. Dowolny przestrzenny układ sił. Redukcja dowolnego przestrzennego układu sił do siły i pary sił. Równania równowagi. Środki ciężkości bryły, powierzchni i linii. Kinematyka punktu: a) równania ruchu punktu, b) prędkość i przyspieszenie punktu. Ruch postępowy i ruch obrotowy ciała sztywnego. Ruch płaski ciała sztywnego. Prędkości i przyspieszenia w ruchu płaskim. Dynamika punktu. Równanie różniczkowe ruchu punktu. Praca siły, moc siły, energia kinetyczna i energia potencjalna punktu materialnego. Twierdzenie o energii kinetycznej. Prawo zachowania energii mechanicznej. Pęd i moment pędu punktu materialnego. Moment bezwładności ciała materialnego. Dynamika ruchu postępowego i obrotowego ciała sztywnego. | 30 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | uczestnictwo w zajęciach | 30 |
A-A-2 | Wkład własny studenta | 32 |
62 | ||
wykłady | ||
A-W-1 | Wkład własny studenta | 29 |
A-W-2 | Egzamin końcowy | 4 |
A-W-3 | uczestnictwo w zajęciach | 30 |
63 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykłady - metoda podająca - wykład informacyjny z wykorzystaniem środków audiowizualnych. |
M-2 | Ćwiczenia audytoryjne - praktyczne rozwiązywanie przykładowych zadań na tablicy przy aktywnym uczestnictwie całej grupy. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Ocena na podstawie odpowiedzi w trakcie trwania ćwiczeń audytoryjnych oraz na podstawie przeprowadzonych sprawdzianów i oddanych prac domowych. |
S-2 | Ocena podsumowująca: Ocena ćwiczeń audytoryjnych na podstawie przeprowadzonych dwóch pisemnych kolokwiów i dwóch sprawdzianów. |
S-3 | Ocena podsumowująca: Egzamin końcowy - dwuczęściowy składający się z części pisemnej (105 min.) i odpowiedzi ustnej. Można do niego przystąpić dopiero po uzyskaniu zaliczeń z ćwiczeń audytoryjnych. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ZIIP_1A_IJZ/04_W01 W wyniku przeprowadzonych zajęć student powinien mieć wiedzę umożliwiającą prowadzenie analiz statycznych prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze oraz wiedzę niezbędną do opisu kinematyki i dynamiki ruchu punktu oraz kinematyki ruchu obrotowego i płaskiego bryły sztywnej. | ZIIP_1A_W02, ZIIP_1A_W14 | — | — | C-1 | T-W-1, T-A-1 | M-1, M-2 | S-3 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ZIIP_1A_IJZ/04_U01 W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizy statyczne prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze. Powinien umieć także przeprowadzić analizę ruchu punktu i analizę prostych przypadków ruchu bryły sztywnej. | ZIIP_1A_U02, ZIIP_1A_U14, ZIIP_1A_U19, ZIIP_1A_U22 | — | — | C-2 | T-W-1, T-A-1 | M-1, M-2 | S-2, S-1, S-3 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ZIIP_1A_IJZ/04_K01 W wyniku przeprowadzonych zajęć student nabędzie świadomość konieczności prowadzenia szczegółowych analiz mechanicznych - statycznych, kinematycznych i dynamicznych tworzonych i eksploatowanych obiektów i ich poszczególnych elementów. | ZIIP_1A_K01, ZIIP_1A_K03 | — | — | C-2 | T-W-1, T-A-1 | M-1, M-2 | S-2, S-3 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ZIIP_1A_IJZ/04_W01 W wyniku przeprowadzonych zajęć student powinien mieć wiedzę umożliwiającą prowadzenie analiz statycznych prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze oraz wiedzę niezbędną do opisu kinematyki i dynamiki ruchu punktu oraz kinematyki ruchu obrotowego i płaskiego bryły sztywnej. | 2,0 | - Student nie zna jednostek takich wielkości, jak: siła, moment siły, praca, prędkość, przyspieszenie. - Nie potrafi zdefiniować pojęcia momentu siły wzglądem punktu i momentu siły względem osi. - Nie potrafi zdefiniować warunków równowagi dla płaskiego zbieżnego i płaskiego dowolnego układu sił. - Nie potrafi zdefiniować warunków równowagi dla przestrzennego zbieżnego i przestrzennego dowolnego układu sił. - Nie potrafi opisać wielkości charakteryzujących ruch punktu i ruch obrotowy bryły sztywnej. - Nie zna praw Newtona. - Nie zna prawa zachowania energii mechanicznej. |
3,0 | - Student zna jednostki takich wielkości, jak: siła, moment siły, praca, prędkość, przyspieszenie. - Potrafi zdefiniować pojęcie momentu siły wzglądem punktu i momentu siły względem osi. - Potrafi zdefiniować warunki równowagi dla płaskiego zbieżnego i płaskiego dowolnego układu sił. - Potrafi zdefiniować warunki równowagi dla przestrzennego zbieżnego i przestrzennego dowoln układu sił. - Potrafi opisać wielkości charakteryzujące ruch punktu i ruch obrotowy bryły sztywnej. - Zna prawa Newtona. - Zna prawo zachowania energii mechanicznej. | |
3,5 | - Student zna jednostki takich wielkości, jak: siła, moment siły, praca, prędkość, przyspieszenie. - Potrafi zdefiniować pojęcie momentu siły wzglądem punktu i momentu siły względem osi. - Potrafi zdefiniować warunki równowagi dla płaskiego zbieżnego i płaskiego dowolnego układu sił. - Potrafi zdefiniować warunki równowagi dla przestrzennego zbieżnego i przestrzennego dowolnego układu sił. - Potrafi opisać wielkości charakteryzujące ruch punktu i i zdefiniować zależności zachodzące między nimi. - Potrafi opisać wielkości charakteryzujące ruch obrotowy bryły sztywnej i zdefiniować zależności zachodzące między nimi.. - Potrafi opisać zjawisko tarcia i zna prawa tarcia. - Potrafi obliczyć prędkość i przyspieszenie punktu przy znanych równaniach ruchu i potrafi obliczyć promień krzywizny. - Potrafi obliczyć prędkość i przyspieszenie punktu bryły sztywnej przy przeniesieniu ruchu obrotowego. - Zna prawa Newtona. - Zna prawo zachowania energii mechanicznej. | |
4,0 | - Student zna jednostki takich wielkości, jak: siła, moment siły, praca, prędkość, przyspieszenie. - Potrafi zdefiniować pojęcie momentu siły wzglądem punktu i momentu siły względem osi. - Potrafi zdefiniować warunki równowagi dla płaskiego zbieżnego i płaskiego dowolnego układu sił. - Potrafi zdefiniować warunki równowagi dla przestrzennego zbieżnego i przestrzennego dowolnego układu sił. - Potrafi opisać wielkości charakteryzujące ruch punktu i i zdefiniować zależności zachodzące między nimi. - Potrafi opisać wielkości charakteryzujące ruch obrotowy bryły sztywnej i zdefiniować zależności zachodzące między nimi.. - Potrafi opisać zjawisko tarcia i zna prawa tarcia. - Potrafi obliczyć prędkość i przyspieszenie punktu przy znanych równaniach ruchu i potrafi obliczyć promień krzywizny. - Potrafi obliczyć prędkość i przyspieszenie punktu bryły sztywnej przy przeniesieniu ruchu obrotowego. - Potrafi obliczyć prędkość i przyspieszenie punktu bryły sztywnej przy przeniesieniu postępowego i ruchu obrotowego. - Zna prawa Newtona. - Zna prawo zachowania energii mechanicznej. - Potrafi sformułować równania równowagi dla płaskiego dowolnego i przestrzennego dowolnego układu sił z połączeniami przegubowymi. - Potrafi zformułować równania równowagi i dla układów, w których występuje tarcie. | |
4,5 | Wymagania takie same jak na ocenę 4,0, plus umiejętność przeprowadzenia analizy efektywności wybranej procedury obliczeniowej i umiejętność znajdywania rozwiązań alternatywnych. | |
5,0 | Wymagania takie same jak na ocenę 4,5, plus umiejętność wskazania możliwości praktycznego wykorzystania zdobytej wiedzy z zakresu mechaniki. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ZIIP_1A_IJZ/04_U01 W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizy statyczne prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze. Powinien umieć także przeprowadzić analizę ruchu punktu i analizę prostych przypadków ruchu bryły sztywnej. | 2,0 | - Student nie potrafi napisać równań równowagi dla płaskiego dowolnego układu sił. - Nie potrafi napisać równania momentu siły względem punktu. - Nie potrafi napisać równania momentu siły względem osi. - Nie potrafi napisać równań równowagi dla przestrzennego dowolnego układu sił. - Nie potrafi obliczyć prędkości i przyspieszenia punktu przy znanych prostych równaniach ruchu. |
3,0 | - Student potrafi napisać równania równowagi dla płaskiego zbieżnego i płaskiego dowolnego układu sił oraz dla przestrzennego zbieżnego i przestrzennego dowolnego układu sił. - Potrafi obliczyć prędkości i przyspieszenia punktu przy znanych równaniach ruchu. | |
3,5 | - Student potrafi napisać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego dowolnego układu sił. - Potrafi napisać równania równowagi dla układów, w których występują siły tarcia. - Potrafi obliczyć prędkości i przyspieszenie punktu przy znanych równaniach ruchu. Potrafi obliczyć promień krzywizny - Potrafi obliczyć prędkości i przyspieszenia punktu przy przeniesieniu ruchu obrotowego | |
4,0 | - Student potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego układu sił. - Potrafi napisać i rozwiązać równania równowagi dla układów, w których występują siły tarcia. - Potrafi napisać równania ruchu punktu, a następnie obliczyć jego prędkości i przyspieszenie. Potrafi obliczyć promień krzywizny. - Potrafi obliczyć prędkości i przyspieszenia punktu przy przeniesieniu ruchu postępowego i obrotowego. | |
4,5 | - Student potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego układu sił oraz potrafi napisać równania alternatywne. - Potrafi napisać i rozwiązać równania równowagi dla układów, w których występują siły tarcia. - Potrafi przeprowadzić pełną analizę ruchu punktu. - Potrafi przeprowadzić pełną analizę ruchu w przypadku przeniesienia ruchu postępowego i obrotowego. | |
5,0 | - Student potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego układu sił oraz potrafi zaproponować alternatywny - układ (układy) równań i uzasadnić, który z nich jest najlepszy. - Potrafi przeprowadzić pełna analizę ruchu punktu. - Potrafi przeprowadzić pełną analizę ruchu w przypadku przeniesienia ruchu postępowego i obrotowego. Potrafi przeprowadzić analizę efektywności wybranej procedury obliczeniowej. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ZIIP_1A_IJZ/04_K01 W wyniku przeprowadzonych zajęć student nabędzie świadomość konieczności prowadzenia szczegółowych analiz mechanicznych - statycznych, kinematycznych i dynamicznych tworzonych i eksploatowanych obiektów i ich poszczególnych elementów. | 2,0 | - Student nie ma świadomości ważności wiedzy z mechaniki ogólnej w procesie projektowania maszyn oraz innych konstrukcji mechanicznych i ich poszczególnych elementów. - Student nie ma świadomości ważności wiedzy z mechaniki ogólnej przy eksploatacji maszyn oraz innych konstrukcji mechanicznych i ich poszczególnych elementów. |
3,0 | - Student ma świadomość ważności wiedzy z mechaniki ogólnej w procesie projektowania elementów maszyn oraz innych konstrukcji mechanicznych i ich poszczególnych elementów oraz ma świadomość ważności doboru odpowiednich technik i metod obliczeniowych. - Student ma świadomość ważności wiedzy z mechaniki ogólnej przy eksploatacji maszyn oraz innych konstrukcji mechanicznych. | |
3,5 | - Student spełnia wymagania na ocenę 3.0 oraz wykazuje dbałość o poprawne rozwiązanie zadanych zadań przy wykorzystaniu wiedzy podanej na zajęciach. | |
4,0 | - Student spełnia wymagania na ocenę 3.5 oraz wykazuje potrzebę krytycznej oceny uzyskanych wyników. | |
4,5 | - Student spełnia wymagania na ocenę 4.0 oraz wykazuje możliwość dojścia do rozwiązania różnymi metodami. - Student wykazuje otwartość na pracę w zespole. | |
5,0 | - Student spełnia wymagania na ocenę 4.5 oraz wykazuje potrzebę ciągłego podnoszenia wiedzy z zakresu mechaniki ogólnej i doskonalenia umiejętności praktycznego jej wykorzystania. |
Literatura podstawowa
- Leyko J., Mechanika ogólna, PWN, Warszawa, 2010, t. 1 Statyka i kinematyka, t. 2 - Dynamika
- Nizioł J., Metodyka rozwiązywania zadań z mechaniki, WNT, Warszawa, 2009
- Leyko J., Szmelter J., Zbiór zadań z mechaniki ogólnej, PWN, Warszawa, 1978, t. 1 - Statyka, t. 2 - Kinematyka i dynamika
- Niezgodziński M.E., Niezgodziński T., Zbiór zadań z mechaniki ogólnej, PWN, Warszawa, 2009
Literatura dodatkowa
- Meriam J.L., Kraige L.G., Engineering Mechanics, John Wiley and Sons, New York, 1987, V. 1 - Statics
- Giergiel J., Uhl T., Zbiór zadań z mechaniki ogólnej, PWN, Warszawa, 1987