Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechatronika (S1)

Sylabus przedmiotu Nauka o materiałach II:

Informacje podstawowe

Kierunek studiów Mechatronika
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Nauka o materiałach II
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Technologii Materiałowych
Nauczyciel odpowiedzialny Paweł Kochmański <Pawel.Kochmanski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL2 30 2,00,38zaliczenie
wykładyW2 30 2,00,62egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość podstawowego kursu , chemii, fizyki i matematyki na poziomie absolwenta szkoły średniej.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z wiedzy o właściwościach materiałów.
C-2Student zdobywa umiejętość korzystania ze źródeł literatury.
C-3Student rozwija umiejętność pracy w grupie.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Obliczanie składu ilościowego i wyprowadzanie wzorów związków chemicznych, układanie i bilansowanie równań reakcji chemicznych. Stopień utlenienia, reakcje utleniania – redukcji, pojęcie szeregu elektrochemicznego metali, dysocjacji elektrolitycznej. Podstawowe prawa elektrochemii,i przebieg procesu elektrolizy. Potencjał elektrodowy, standardowy potencjał elektrodowy; elektrody odniesienia: wodorowa, kalomelowa. Ogniwa galwaniczne – budowa i zasada działania, równanie Nernsta, siła elektromotoryczna ogniwa (SEM). Układ równowagi Fe-Fe3C. Znakowanie stopów technicznych. Odlewnicze stopy żelaza – żeliwa, staliwa. Stale konstrukcyjne. Obróbka cieplna stopów żelaza. Obróbka cieplno – chemiczna. Stale narzędziowe. Stale o specjalnych właściwościach. Stopy aluminium. Stopy miedzi. Oznaczanie właściwości termicznych tworzyw polimerowych. Oznaczanie właściwości mechanicznych torzyw polimerowych. Wybrane metody przetwórstwa tworzyw polimerowych.30
30
wykłady
T-W-1Konfiguracja elektronowa atomów. Wiązania międzyatomowe. Wiązania międzycząsteczkowe. Hierarchiczny model struktury materiału: konfiguracja elektronowa atomów, charakter wiązania, struktura, defekty struktury krystalicznej. Właściwości chemiczne i fizyczne materiałów. Stany skupienia materii: gazy, ciecze, ciała stałe.5
T-W-2Wprowadzenie do nauki o materiałach: znaczenie materiałów w technice, podział i charakterystyka podstawowych grup materiałów. Struktura krystalograficzna i jej wpływ na właściwości metali i stopów. Defekty struktury krystalograficznej i ich wpływ na właściwości metali i stopów. Materiały amorficzne. Podstawy krystalizacji metali i stopów. Odkształcenie plastyczne. Zgniot, umocnienie i rekrystalizacja. Zużycie i niszczenie elementów maszyn. Przemiany fazowe i fazy w stopach metali. Równowaga fazowa w stopach. Badania metalograficzne metali i stopów: makroskopowe, mikroskopowe, nieniszczące, nowoczesne metody badań metali i stopów. Stopy żelaza z węglem.10
T-W-3Budowa fizyczna materiałów polimerowych i jej znaczenie (struktura amorficzna, krystaliczna, ciekłokrystaliczna). Ocena właściwości i metody badań materiałów polimerowych. Charakterystyka wybranych grup materiałów polimerowych o szczególnym znaczeniu przemysłowym. Wybrane metody i aspekty przetwórstwa tworzyw polimerowych.15
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w zajęciach laboratoryjnych.30
A-L-2Praca własna20
50
wykłady
A-W-1Uczestnictwo w wykładach30
A-W-2Praca własna20
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
M-2Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium. Prezentacje sprawozdań z przeprowadzonych ekperymentów.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych, zaliczeń krótkich sprawdzianów sprawdzajacych przygotowanie do ćwiczeń oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie podsumowujące.
S-2Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do egzaminu pisemnego; ocenę pozytywną otrzymuje po uzyskaniu co najmniej połowy punktów. Do egzaminu ustnego przystępują studenci po uzykaniu ok 50% punktów z egzaminu pisemnego.
S-3Ocena podsumowująca: Ocena końcowa z przedmiotu jest średnią ważoną z egzaminu (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ME_1A_B06_W01
Student ma wiedzę w zakresie struktury i właściwosci materiałów stanowiacych podstawy wiedzy o materiałach konstrukcyjnych.
ME_1A_W06C-1, C-2, C-3T-W-1, T-W-2M-1S-2, S-3
ME_1A_B06_W02
Student ma wiedzę o zjawiskach zachodzących podczas korozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów i produkcji.
ME_1A_W06C-1T-W-1M-2S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ME_1A_B06_U01
Student potrafi skorelować strukturę materiałów konstrukcyjnych oraz narzędziowych z ich właściwościami oraz potrafi wybrać metodę badań struktury i właściwości materiałów, a także dokonać interpretacji uzyskanych wyników. Student potrafi dobrać odpowiedni materiał do pracy elementu konstrukcyjnego w danych warunkach eksploatacyjnych.
ME_1A_U01C-1T-W-1, T-W-2, T-L-1M-1S-2, S-3

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ME_1A_B06_K01
Umiejętność rozrózniania materiałów, oceny ich właściwości i przydatności w konstrukcji maszyn
ME_1A_K01C-1, C-2, C-3T-W-2M-1S-2, S-3

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
ME_1A_B06_W01
Student ma wiedzę w zakresie struktury i właściwosci materiałów stanowiacych podstawy wiedzy o materiałach konstrukcyjnych.
2,0nie zna podstaw materiałoznawstwa
3,0Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej.
3,5Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą.
4,0Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą.
4,5Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów.
5,0Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów i potrafi interpretować uzyskiwane wyniki.
ME_1A_B06_W02
Student ma wiedzę o zjawiskach zachodzących podczas korozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów i produkcji.
2,0nie zna podstaw z materiałoznawstwa i terminologii z zakresu korozji-erozji.
3,0zna podstawy materiałoznawstwa, potrafi opisać zależność struktury od właściwości materiałów, zna terminologię z zakresu korozji-erozji.
3,5zna dobrze podstawy materiałoznawstwa, potrafi opisać zależność struktury od właściwości materiałów, porafi podać przykłady zastosowania, potrafi opisać wpływ zjawisk fizykochemicznych na strukturę materiałów, zna klasyfikacje objawów i mechanizmów korozji, korozji-erozji, zna sposoby oceny ilościowej, wymieni metody zabezpieczeń antykorozyjnych i tribokorozyjnych.
4,0zna dobrze podstawy materiałoznawstwa, potrafi opisać zależność struktury od właściwości materiałów, porafi podac przyklady zastosowania, potrafi opisać wpływ zjawisk fizykochemicznych na strukturę materiałów, zna dobrze techniki badawcze z zakresu materiałoznawstwa, rozumie mechanizmy zniszczenia i rozumie przyczyny zniszczenia materiałów w warunkach eksploatacyjnych.
4,5zna bardzo dobrze podstawy materiałoznawstwa, potrafi opisać zależność struktury od właściwości materiałów, porafi podac przyklady zastosowania, potrafi opisać wpływ zjawisk fizykochemicznych na strukture materiałów, zna przykłady i potrafi opisać struktury wybranych materiałów specjalnych, zna dobrze techniki badawcze z zakresu materiałoznawstwa, zna mechanizmy zniszczenia i rozumie przyczyny zniszczenia materiałów w warunkach eksploatacyjnych.
5,0zna bardzo dobrze podstawy materiałoznawstwa, potrafi opisać zależność struktury od właściwości materiałów, porafi podac przyklady zastosowania, potrafi opisać wpływ zjawisk fizykochemicznych na strukture materiałów, zna przykłady i potrafi opisac struktury wybranych materiałów specjalnych, zna bardzo dobrze techniki badawcze z zakresu, proponuje sposoby zabezpieczania konstrukcji przed zniszczeniem korozyjnym lub tribokorozyjnym.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
ME_1A_B06_U01
Student potrafi skorelować strukturę materiałów konstrukcyjnych oraz narzędziowych z ich właściwościami oraz potrafi wybrać metodę badań struktury i właściwości materiałów, a także dokonać interpretacji uzyskanych wyników. Student potrafi dobrać odpowiedni materiał do pracy elementu konstrukcyjnego w danych warunkach eksploatacyjnych.
2,0nie zna podstaw materiałoznawstwa
3,0Student uczestniczył w zajęciach. Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej.
3,5Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą.
4,0Student uczestniczył w zajęciach. Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą.
4,5Student uczestniczył w zajęciach. Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów.
5,0Student uczestniczył w zajęciach. Student bardzo dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów i potrafi interpretować uzyskiwane wyniki.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
ME_1A_B06_K01
Umiejętność rozrózniania materiałów, oceny ich właściwości i przydatności w konstrukcji maszyn
2,0nie zna podstaw materiałoznawstwa
3,0Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej. Potrafi dokonać wyboru materiału do pracy w określonych warunkach.
3,5Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Potrafi dokonać wyboru materiału do pracy w określonych warunkach.
4,0Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Potrafi dokonać wyboru materiału do pracy w określonych warunkach.
4,5Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów. Potrafi dokonać wyboru materiału do pracy w określonych warunkach.
5,0Student bardzo dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów i potrafi interpretować uzyskiwane wyniki. Potrafi dokonać wyboru materiału do pracy w określonych warunkach.

Literatura podstawowa

  1. Dobrzanski L.A, Materiały inzynierskie i projektowanie materiałowe: podstawy nauki o materiałach i metaloznawstwo, Wydawnictwa Naukowo-Techniczne, Warszawa, 2006
  2. Dobrzanski L.A., Materiały inzynierskie i projektowanie materiałowe: podstawy nauki o materiałach i metaloznawstwo, WNT, Warszawa, 2006
  3. S. Prowans, Metaloznawstwo, PWN, Warszawa, 1988
  4. S. Prowans, Metaloznawstwo, PWN, Warszawa, 1988
  5. L. A. Dobrzanski, Metaloznawstwo z podstawami nauki o materiałach, WNT, Warszawa, 1994
  6. K. Przybyłowicz, Metaloznawstwo, WNT, Warszawa, 1994
  7. A. Barbacki, Metaloznawstwo dla mechaników, Wydawnictwo Politechniki Poznańskiej, Poznań, 1998
  8. A. Barbacki, Metaloznawstwo dla mechaników, Wydawnictwo Politechniki Poznanskiej, Poznan, 1998
  9. S. Prowans, Materiałoznawstwo – cwiczenia laboratoryjne, Politechnika Szczecinska, Szczecin, 1978

Literatura dodatkowa

  1. H.H. Uhlig, Korozja i jej zapobieganie, WNT, Warszawa, 1976
  2. M.Kamiński, B.Ważyński, Podstawy chemii dla inzynierii materialowej, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2004, I
  3. A. Appen, Żaroodporne powłoki nieorganiczne, WNT, Warszawa, 1970
  4. S. Mrowec, T. Weber, Korozja gazowa metali, Wyd. „Śląsk”, Katowice, 1975
  5. L. A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo, WNT, Gliwice -Warszawa, 2002

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Obliczanie składu ilościowego i wyprowadzanie wzorów związków chemicznych, układanie i bilansowanie równań reakcji chemicznych. Stopień utlenienia, reakcje utleniania – redukcji, pojęcie szeregu elektrochemicznego metali, dysocjacji elektrolitycznej. Podstawowe prawa elektrochemii,i przebieg procesu elektrolizy. Potencjał elektrodowy, standardowy potencjał elektrodowy; elektrody odniesienia: wodorowa, kalomelowa. Ogniwa galwaniczne – budowa i zasada działania, równanie Nernsta, siła elektromotoryczna ogniwa (SEM). Układ równowagi Fe-Fe3C. Znakowanie stopów technicznych. Odlewnicze stopy żelaza – żeliwa, staliwa. Stale konstrukcyjne. Obróbka cieplna stopów żelaza. Obróbka cieplno – chemiczna. Stale narzędziowe. Stale o specjalnych właściwościach. Stopy aluminium. Stopy miedzi. Oznaczanie właściwości termicznych tworzyw polimerowych. Oznaczanie właściwości mechanicznych torzyw polimerowych. Wybrane metody przetwórstwa tworzyw polimerowych.30
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Konfiguracja elektronowa atomów. Wiązania międzyatomowe. Wiązania międzycząsteczkowe. Hierarchiczny model struktury materiału: konfiguracja elektronowa atomów, charakter wiązania, struktura, defekty struktury krystalicznej. Właściwości chemiczne i fizyczne materiałów. Stany skupienia materii: gazy, ciecze, ciała stałe.5
T-W-2Wprowadzenie do nauki o materiałach: znaczenie materiałów w technice, podział i charakterystyka podstawowych grup materiałów. Struktura krystalograficzna i jej wpływ na właściwości metali i stopów. Defekty struktury krystalograficznej i ich wpływ na właściwości metali i stopów. Materiały amorficzne. Podstawy krystalizacji metali i stopów. Odkształcenie plastyczne. Zgniot, umocnienie i rekrystalizacja. Zużycie i niszczenie elementów maszyn. Przemiany fazowe i fazy w stopach metali. Równowaga fazowa w stopach. Badania metalograficzne metali i stopów: makroskopowe, mikroskopowe, nieniszczące, nowoczesne metody badań metali i stopów. Stopy żelaza z węglem.10
T-W-3Budowa fizyczna materiałów polimerowych i jej znaczenie (struktura amorficzna, krystaliczna, ciekłokrystaliczna). Ocena właściwości i metody badań materiałów polimerowych. Charakterystyka wybranych grup materiałów polimerowych o szczególnym znaczeniu przemysłowym. Wybrane metody i aspekty przetwórstwa tworzyw polimerowych.15
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach laboratoryjnych.30
A-L-2Praca własna20
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w wykładach30
A-W-2Praca własna20
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięME_1A_B06_W01Student ma wiedzę w zakresie struktury i właściwosci materiałów stanowiacych podstawy wiedzy o materiałach konstrukcyjnych.
Odniesienie do efektów kształcenia dla kierunku studiówME_1A_W06Ma podstawową wiedzę o cyklu życia urządzeń mechatronicznych, metodach diagnostyki ich awarii i stopnia zużycia oraz konserwacji.
Cel przedmiotuC-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z wiedzy o właściwościach materiałów.
C-2Student zdobywa umiejętość korzystania ze źródeł literatury.
C-3Student rozwija umiejętność pracy w grupie.
Treści programoweT-W-1Konfiguracja elektronowa atomów. Wiązania międzyatomowe. Wiązania międzycząsteczkowe. Hierarchiczny model struktury materiału: konfiguracja elektronowa atomów, charakter wiązania, struktura, defekty struktury krystalicznej. Właściwości chemiczne i fizyczne materiałów. Stany skupienia materii: gazy, ciecze, ciała stałe.
T-W-2Wprowadzenie do nauki o materiałach: znaczenie materiałów w technice, podział i charakterystyka podstawowych grup materiałów. Struktura krystalograficzna i jej wpływ na właściwości metali i stopów. Defekty struktury krystalograficznej i ich wpływ na właściwości metali i stopów. Materiały amorficzne. Podstawy krystalizacji metali i stopów. Odkształcenie plastyczne. Zgniot, umocnienie i rekrystalizacja. Zużycie i niszczenie elementów maszyn. Przemiany fazowe i fazy w stopach metali. Równowaga fazowa w stopach. Badania metalograficzne metali i stopów: makroskopowe, mikroskopowe, nieniszczące, nowoczesne metody badań metali i stopów. Stopy żelaza z węglem.
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
Sposób ocenyS-2Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do egzaminu pisemnego; ocenę pozytywną otrzymuje po uzyskaniu co najmniej połowy punktów. Do egzaminu ustnego przystępują studenci po uzykaniu ok 50% punktów z egzaminu pisemnego.
S-3Ocena podsumowująca: Ocena końcowa z przedmiotu jest średnią ważoną z egzaminu (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).
Kryteria ocenyOcenaKryterium oceny
2,0nie zna podstaw materiałoznawstwa
3,0Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej.
3,5Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą.
4,0Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą.
4,5Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów.
5,0Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów i potrafi interpretować uzyskiwane wyniki.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięME_1A_B06_W02Student ma wiedzę o zjawiskach zachodzących podczas korozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów i produkcji.
Odniesienie do efektów kształcenia dla kierunku studiówME_1A_W06Ma podstawową wiedzę o cyklu życia urządzeń mechatronicznych, metodach diagnostyki ich awarii i stopnia zużycia oraz konserwacji.
Cel przedmiotuC-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z wiedzy o właściwościach materiałów.
Treści programoweT-W-1Konfiguracja elektronowa atomów. Wiązania międzyatomowe. Wiązania międzycząsteczkowe. Hierarchiczny model struktury materiału: konfiguracja elektronowa atomów, charakter wiązania, struktura, defekty struktury krystalicznej. Właściwości chemiczne i fizyczne materiałów. Stany skupienia materii: gazy, ciecze, ciała stałe.
Metody nauczaniaM-2Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium. Prezentacje sprawozdań z przeprowadzonych ekperymentów.
Sposób ocenyS-1Ocena podsumowująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych, zaliczeń krótkich sprawdzianów sprawdzajacych przygotowanie do ćwiczeń oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie podsumowujące.
Kryteria ocenyOcenaKryterium oceny
2,0nie zna podstaw z materiałoznawstwa i terminologii z zakresu korozji-erozji.
3,0zna podstawy materiałoznawstwa, potrafi opisać zależność struktury od właściwości materiałów, zna terminologię z zakresu korozji-erozji.
3,5zna dobrze podstawy materiałoznawstwa, potrafi opisać zależność struktury od właściwości materiałów, porafi podać przykłady zastosowania, potrafi opisać wpływ zjawisk fizykochemicznych na strukturę materiałów, zna klasyfikacje objawów i mechanizmów korozji, korozji-erozji, zna sposoby oceny ilościowej, wymieni metody zabezpieczeń antykorozyjnych i tribokorozyjnych.
4,0zna dobrze podstawy materiałoznawstwa, potrafi opisać zależność struktury od właściwości materiałów, porafi podac przyklady zastosowania, potrafi opisać wpływ zjawisk fizykochemicznych na strukturę materiałów, zna dobrze techniki badawcze z zakresu materiałoznawstwa, rozumie mechanizmy zniszczenia i rozumie przyczyny zniszczenia materiałów w warunkach eksploatacyjnych.
4,5zna bardzo dobrze podstawy materiałoznawstwa, potrafi opisać zależność struktury od właściwości materiałów, porafi podac przyklady zastosowania, potrafi opisać wpływ zjawisk fizykochemicznych na strukture materiałów, zna przykłady i potrafi opisać struktury wybranych materiałów specjalnych, zna dobrze techniki badawcze z zakresu materiałoznawstwa, zna mechanizmy zniszczenia i rozumie przyczyny zniszczenia materiałów w warunkach eksploatacyjnych.
5,0zna bardzo dobrze podstawy materiałoznawstwa, potrafi opisać zależność struktury od właściwości materiałów, porafi podac przyklady zastosowania, potrafi opisać wpływ zjawisk fizykochemicznych na strukture materiałów, zna przykłady i potrafi opisac struktury wybranych materiałów specjalnych, zna bardzo dobrze techniki badawcze z zakresu, proponuje sposoby zabezpieczania konstrukcji przed zniszczeniem korozyjnym lub tribokorozyjnym.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięME_1A_B06_U01Student potrafi skorelować strukturę materiałów konstrukcyjnych oraz narzędziowych z ich właściwościami oraz potrafi wybrać metodę badań struktury i właściwości materiałów, a także dokonać interpretacji uzyskanych wyników. Student potrafi dobrać odpowiedni materiał do pracy elementu konstrukcyjnego w danych warunkach eksploatacyjnych.
Odniesienie do efektów kształcenia dla kierunku studiówME_1A_U01Potrafi pozyskiwać informacje z literatury, baz danych i innych źródeł. Potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie.
Cel przedmiotuC-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z wiedzy o właściwościach materiałów.
Treści programoweT-W-1Konfiguracja elektronowa atomów. Wiązania międzyatomowe. Wiązania międzycząsteczkowe. Hierarchiczny model struktury materiału: konfiguracja elektronowa atomów, charakter wiązania, struktura, defekty struktury krystalicznej. Właściwości chemiczne i fizyczne materiałów. Stany skupienia materii: gazy, ciecze, ciała stałe.
T-W-2Wprowadzenie do nauki o materiałach: znaczenie materiałów w technice, podział i charakterystyka podstawowych grup materiałów. Struktura krystalograficzna i jej wpływ na właściwości metali i stopów. Defekty struktury krystalograficznej i ich wpływ na właściwości metali i stopów. Materiały amorficzne. Podstawy krystalizacji metali i stopów. Odkształcenie plastyczne. Zgniot, umocnienie i rekrystalizacja. Zużycie i niszczenie elementów maszyn. Przemiany fazowe i fazy w stopach metali. Równowaga fazowa w stopach. Badania metalograficzne metali i stopów: makroskopowe, mikroskopowe, nieniszczące, nowoczesne metody badań metali i stopów. Stopy żelaza z węglem.
T-L-1Obliczanie składu ilościowego i wyprowadzanie wzorów związków chemicznych, układanie i bilansowanie równań reakcji chemicznych. Stopień utlenienia, reakcje utleniania – redukcji, pojęcie szeregu elektrochemicznego metali, dysocjacji elektrolitycznej. Podstawowe prawa elektrochemii,i przebieg procesu elektrolizy. Potencjał elektrodowy, standardowy potencjał elektrodowy; elektrody odniesienia: wodorowa, kalomelowa. Ogniwa galwaniczne – budowa i zasada działania, równanie Nernsta, siła elektromotoryczna ogniwa (SEM). Układ równowagi Fe-Fe3C. Znakowanie stopów technicznych. Odlewnicze stopy żelaza – żeliwa, staliwa. Stale konstrukcyjne. Obróbka cieplna stopów żelaza. Obróbka cieplno – chemiczna. Stale narzędziowe. Stale o specjalnych właściwościach. Stopy aluminium. Stopy miedzi. Oznaczanie właściwości termicznych tworzyw polimerowych. Oznaczanie właściwości mechanicznych torzyw polimerowych. Wybrane metody przetwórstwa tworzyw polimerowych.
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
Sposób ocenyS-2Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do egzaminu pisemnego; ocenę pozytywną otrzymuje po uzyskaniu co najmniej połowy punktów. Do egzaminu ustnego przystępują studenci po uzykaniu ok 50% punktów z egzaminu pisemnego.
S-3Ocena podsumowująca: Ocena końcowa z przedmiotu jest średnią ważoną z egzaminu (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).
Kryteria ocenyOcenaKryterium oceny
2,0nie zna podstaw materiałoznawstwa
3,0Student uczestniczył w zajęciach. Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej.
3,5Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą.
4,0Student uczestniczył w zajęciach. Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą.
4,5Student uczestniczył w zajęciach. Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów.
5,0Student uczestniczył w zajęciach. Student bardzo dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów i potrafi interpretować uzyskiwane wyniki.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięME_1A_B06_K01Umiejętność rozrózniania materiałów, oceny ich właściwości i przydatności w konstrukcji maszyn
Odniesienie do efektów kształcenia dla kierunku studiówME_1A_K01Rozumie potrzebę ciągłego uczenia się celem utrzymania poziomu i podnoszenia kompetencji zawodowych, osobistych i społecznych.
Cel przedmiotuC-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z wiedzy o właściwościach materiałów.
C-2Student zdobywa umiejętość korzystania ze źródeł literatury.
C-3Student rozwija umiejętność pracy w grupie.
Treści programoweT-W-2Wprowadzenie do nauki o materiałach: znaczenie materiałów w technice, podział i charakterystyka podstawowych grup materiałów. Struktura krystalograficzna i jej wpływ na właściwości metali i stopów. Defekty struktury krystalograficznej i ich wpływ na właściwości metali i stopów. Materiały amorficzne. Podstawy krystalizacji metali i stopów. Odkształcenie plastyczne. Zgniot, umocnienie i rekrystalizacja. Zużycie i niszczenie elementów maszyn. Przemiany fazowe i fazy w stopach metali. Równowaga fazowa w stopach. Badania metalograficzne metali i stopów: makroskopowe, mikroskopowe, nieniszczące, nowoczesne metody badań metali i stopów. Stopy żelaza z węglem.
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
Sposób ocenyS-2Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do egzaminu pisemnego; ocenę pozytywną otrzymuje po uzyskaniu co najmniej połowy punktów. Do egzaminu ustnego przystępują studenci po uzykaniu ok 50% punktów z egzaminu pisemnego.
S-3Ocena podsumowująca: Ocena końcowa z przedmiotu jest średnią ważoną z egzaminu (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).
Kryteria ocenyOcenaKryterium oceny
2,0nie zna podstaw materiałoznawstwa
3,0Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej. Potrafi dokonać wyboru materiału do pracy w określonych warunkach.
3,5Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Potrafi dokonać wyboru materiału do pracy w określonych warunkach.
4,0Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Potrafi dokonać wyboru materiału do pracy w określonych warunkach.
4,5Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów. Potrafi dokonać wyboru materiału do pracy w określonych warunkach.
5,0Student bardzo dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów i potrafi interpretować uzyskiwane wyniki. Potrafi dokonać wyboru materiału do pracy w określonych warunkach.