Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechatronika (S1)

Sylabus przedmiotu Eksploatacja układów mechatronicznych:

Informacje podstawowe

Kierunek studiów Mechatronika
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Eksploatacja układów mechatronicznych
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Mechatroniki
Nauczyciel odpowiedzialny Marcin Hoffmann <Marcin.Hoffmann@zut.edu.pl>
Inni nauczyciele Andrzej Bodnar <Andrzej.Bodnar@zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 5 Grupa obieralna 2

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW7 15 1,00,59zaliczenie
ćwiczenia audytoryjneA7 15 1,00,41zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowa wiedza z: - statystyki matematycznej, - elektroniki, - mechaniki.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Poznanie zasad eksploatacji układów mechatronicznych. Poznanie metod diagnozowania i nadzoru.
C-2Nabycie umiejętności oceny niezawodności prostych urządzeń mechatronicznych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Obliczanie wskaźników oceny procesu eksploatacji pojedynczego obiektu i grupy obiektów technicznych.2
T-A-2Wyszukiwanie słabych ogniw.2
T-A-3Wyznaczanie trwałości maszyn i środków transportowych na podstawie wyników badań.2
T-A-4Estymowanie parametrów niezawodności.2
T-A-5Prognozowanie niezawodności złożonych układów mechatronicznych.2
T-A-6Wykorzystanie modeli obiektów. Analiza sygnałów diagnostycznych.2
T-A-7Dobór wartości granicznych.2
T-A-8Ocena niezawodności logicznego układu kombinacyjnego.1
15
wykłady
T-W-1Metody utrzymania urządzeń w gotowości technicznej. System obsługi.2
T-W-2Gospodarka remontowa, organizacja remontów. Naprawa zespołów mechanicznych i elektronicznych.2
T-W-3Wycofanie obiektu z użytkowania, utylizacja i recykling. Czynniki i procesy powodujące zmiany stanu technicznego i uszkodzenia elementów maszyn oraz urządzeń. Niesprawność.3
T-W-4Trwałość i niezawodność. Funkcje i miary niezawodności, trwałość, podstawowe zależności.1
T-W-5Modelowanie procesów życia obiektów. Układy szeregowe, równoległe i złożone.2
T-W-6Modele uszkodzeń. Przykłady oceny niezawodności.2
T-W-7Systemy naprawialne. Podnoszenie niezawodności i jej koszty, redundancja. Testowanie żywotności.2
T-W-8Stan techniczny obiektu. Diagnozowanie. Modele diagnostyczne.1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1uczestnictwo w zajęciach15
A-A-2Praca własna10
25
wykłady
A-W-1uczestnictwo w zajęciach15
A-W-2Praca własna10
25

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny.
M-2Ćwiczenia audytoryjne.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Oceana analityczna - średnia ze stopni ze sprawdzianów z zdaniami rachunkowymi.
S-2Ocena podsumowująca: Oceana analityczna - średnia ze stopni z pisemnych sprawdzianów wiedzy przekazanej na wykładzie i zdobytej samodzielnie oraz umiejętność rozwiązywania zadań.
S-3Ocena podsumowująca: Ocena kompetencji personalnych i społecznych - intuicujna w formie aprobaty.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ME_1A_C02-1_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie: - zdefiniować podstawowe zasady eksploatacji układów mechatronicznych, - wymieniać metody utrzymania urządzeń w gotowości technicznej, - wymieniać czynniki i procesy powodujące zmiany stanu technicznego i uszkodzenia elementów maszyn, - zdefiniować trwałość i niezawodność, - rozpoznać układy szeregowe, równoległe i złożone oraz dobrać metodę ich obliczeń, - opisać stan techniczny obiektu systemy naprawialne oraz metod diagnozowania i nadzoru - zaproponować metodę podniesienia niezawodności układu
ME_1A_W06C-1T-A-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7, T-A-8, T-W-2, T-W-4, T-W-3, T-W-5, T-W-6, T-W-7, T-W-8, T-W-1M-1, M-2S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ME_1A_C02-1_U01
W wyniku przeprowadzonych zajęć student powinien umieć: - zinterpretować podstawowe wskaźniki związane z niezawodnością i eksploatacją układów mechatronicznych - zastosować metody utrzymania urządzeń w gotowości technicznej do konkretnych obiektów - zinterpretować czynniki i procesy powodujące zmiany stanu technicznego i uszkodzenia elementów maszyn - obliczać niezawodność i trwałość układy szeregowych, równoległych i złożonych - dobierać metodę podniesienia niezawodności układu
ME_1A_U14, ME_1A_U15, ME_1A_U13C-2T-A-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7, T-A-8M-1, M-2S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ME_1A_C02-1_K01
Ćwiczenia w grupie kształtują właściwa postawę studenta do efektywnej współpracy w zespole. Student rozumie potrzebę nabywania nowej wiedzy.
ME_1A_K01, ME_1A_K03C-1T-A-1, T-A-2, T-A-4, T-A-5M-1, M-2S-3

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
ME_1A_C02-1_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie: - zdefiniować podstawowe zasady eksploatacji układów mechatronicznych, - wymieniać metody utrzymania urządzeń w gotowości technicznej, - wymieniać czynniki i procesy powodujące zmiany stanu technicznego i uszkodzenia elementów maszyn, - zdefiniować trwałość i niezawodność, - rozpoznać układy szeregowe, równoległe i złożone oraz dobrać metodę ich obliczeń, - opisać stan techniczny obiektu systemy naprawialne oraz metod diagnozowania i nadzoru - zaproponować metodę podniesienia niezawodności układu
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzą z zakresu przedmiotu. Nie portafi kojarzyć i analizaować nabytej wiedzy. Czasaem nie wie jak ją wykorzystać.
3,5Student opanował wiedzę w stopniu średnim między oceną 3.0 i 4.0.
4,0Student opanował podstawową wiedzę z zakresu przedmiotu. Zna ograniczenia i obszary jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4.0 i 5.0.
5,0Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary jej stosowania.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
ME_1A_C02-1_U01
W wyniku przeprowadzonych zajęć student powinien umieć: - zinterpretować podstawowe wskaźniki związane z niezawodnością i eksploatacją układów mechatronicznych - zastosować metody utrzymania urządzeń w gotowości technicznej do konkretnych obiektów - zinterpretować czynniki i procesy powodujące zmiany stanu technicznego i uszkodzenia elementów maszyn - obliczać niezawodność i trwałość układy szeregowych, równoległych i złożonych - dobierać metodę podniesienia niezawodności układu
2,0Nie potrafi poprawnie rozwiązywać zadań. Przy wykonywaniu ćwiczeń nie potrafi wyjaśnić metody obliczeniowej oraz konieczności obliczeń. Ma problemy z formułowaniem wniosków.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Student rozwiązuje zadania metodami nieoptymalnymi. Popełnia pomyłki w obliczeniach. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny.
3,5Student posiadł umiejętności w stopniu pośrednim, między oceną 3,0 i 4,0.
4,0Student ma umiejętności kojarzenia i analizy nabytej wiedzy. Zadania najczęściej rozwiązuje metodami optymalnymi. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny, potrafi interpretować wyniki pomiarów. W sposób dobry opanować nazewnictwo z zakresu eksploatacji urządzań.
4,5Student posiadł umiejętności w stopniu pośrednim, między oceną 4,0 i 5,0.
5,0Student ma umiejętności kojarzenia i analizy nabytej wiedzy. Zadania rozwiązuje metodami optymalnymi. Potrafi wykorzystywać właściwe metody obliczeniowe. Ćwiczenia praktyczne realizuje wzorowo, w sposób aktywny, potrafi ocenić metodę i wyniki obliczeń. Opanował nazewnictwo z zakresu eksploatacji urządzań.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
ME_1A_C02-1_K01
Ćwiczenia w grupie kształtują właściwa postawę studenta do efektywnej współpracy w zespole. Student rozumie potrzebę nabywania nowej wiedzy.
2,0Student biernie uczestniczy w zajęciach, nie angażuje się w pracy zespołu.
3,0Student biernie uczestniczy w zajęciach, realizuje proste prace zlecone mu przez innych członków zespołu, wymaga stałego nadzoru.
3,5Student posiadł kompetencje w stopniu pośrednim między oceną 3,0 i 4,0.
4,0Student czynnie uczestniczy w zajęciach, samodzielnie realizuje powierzoną mu część zadania. Poprafi ocenić i projektować konstrukcje o wymagalenj niezawodności.
4,5Student posiadł kompetencje w stopniu pośrednim między oceną 4,0 i 5,0.
5,0Student czynnie uczestniczy w zajęciach, samodzielnie realizuje powierzoną mu część zadania. Pomaga innym członkom zespołu w realizacji ich zadań. Aktywnie uczestniczy w dyskusjach nad rozwiązywanymi przez zespół problemami. Jest kreatywny chętny do współpracy i wykazuje cechy lidera zespołu. Bardzo dobrze ocenia i projektuje konstrukcje o wymagalenj niezawodności.

Literatura podstawowa

  1. Gołąbek A., Eksploatacja i niezawodność maszyn, Wydaw. Politechniki Wrocławskiej, Wrocław, 1988
  2. Bobrowski D., Modele i metody matematyczne w teorii niezawodności, WNT, Warszawa, 1985
  3. Gładysz H., Peciakowski E., Niezawodność elementów elektronicznych, WKŁ, Warszawa, 1987
  4. Cempel Cz., Podstawy wibroakustycznej diagnostyki maszyn, WNT, Warszawa, 1982

Literatura dodatkowa

  1. Red. Korbicza J., Kościelnego J.M., Kowalczuka Z., Cholewy W., Diagnostyka procesów. Modele. Metody sztucznej inteligencji. Zastosowania., WNT, Warszawa, 2002
  2. Żółtowski B., Tylicki H., Wybrane problemy eksploatacji maszyn, PWSZ St. Staszica, Piła, 2004
  3. Bucior J., Podstawy teorii i inżynierii niezawodności, Oficyna Wydaw. Politechniki Rzeszowskiej, Rzeszów, 2004
  4. Red. Prażewska M., Niezawodność urządzeń elektronicznych, WKŁ, Warszawa, 1987

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Obliczanie wskaźników oceny procesu eksploatacji pojedynczego obiektu i grupy obiektów technicznych.2
T-A-2Wyszukiwanie słabych ogniw.2
T-A-3Wyznaczanie trwałości maszyn i środków transportowych na podstawie wyników badań.2
T-A-4Estymowanie parametrów niezawodności.2
T-A-5Prognozowanie niezawodności złożonych układów mechatronicznych.2
T-A-6Wykorzystanie modeli obiektów. Analiza sygnałów diagnostycznych.2
T-A-7Dobór wartości granicznych.2
T-A-8Ocena niezawodności logicznego układu kombinacyjnego.1
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Metody utrzymania urządzeń w gotowości technicznej. System obsługi.2
T-W-2Gospodarka remontowa, organizacja remontów. Naprawa zespołów mechanicznych i elektronicznych.2
T-W-3Wycofanie obiektu z użytkowania, utylizacja i recykling. Czynniki i procesy powodujące zmiany stanu technicznego i uszkodzenia elementów maszyn oraz urządzeń. Niesprawność.3
T-W-4Trwałość i niezawodność. Funkcje i miary niezawodności, trwałość, podstawowe zależności.1
T-W-5Modelowanie procesów życia obiektów. Układy szeregowe, równoległe i złożone.2
T-W-6Modele uszkodzeń. Przykłady oceny niezawodności.2
T-W-7Systemy naprawialne. Podnoszenie niezawodności i jej koszty, redundancja. Testowanie żywotności.2
T-W-8Stan techniczny obiektu. Diagnozowanie. Modele diagnostyczne.1
15

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1uczestnictwo w zajęciach15
A-A-2Praca własna10
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach15
A-W-2Praca własna10
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięME_1A_C02-1_W01W wyniku przeprowadzonych zajęć student powinien być w stanie: - zdefiniować podstawowe zasady eksploatacji układów mechatronicznych, - wymieniać metody utrzymania urządzeń w gotowości technicznej, - wymieniać czynniki i procesy powodujące zmiany stanu technicznego i uszkodzenia elementów maszyn, - zdefiniować trwałość i niezawodność, - rozpoznać układy szeregowe, równoległe i złożone oraz dobrać metodę ich obliczeń, - opisać stan techniczny obiektu systemy naprawialne oraz metod diagnozowania i nadzoru - zaproponować metodę podniesienia niezawodności układu
Odniesienie do efektów kształcenia dla kierunku studiówME_1A_W06Ma podstawową wiedzę o cyklu życia urządzeń mechatronicznych, metodach diagnostyki ich awarii i stopnia zużycia oraz konserwacji.
Cel przedmiotuC-1Poznanie zasad eksploatacji układów mechatronicznych. Poznanie metod diagnozowania i nadzoru.
Treści programoweT-A-1Obliczanie wskaźników oceny procesu eksploatacji pojedynczego obiektu i grupy obiektów technicznych.
T-A-2Wyszukiwanie słabych ogniw.
T-A-3Wyznaczanie trwałości maszyn i środków transportowych na podstawie wyników badań.
T-A-4Estymowanie parametrów niezawodności.
T-A-5Prognozowanie niezawodności złożonych układów mechatronicznych.
T-A-6Wykorzystanie modeli obiektów. Analiza sygnałów diagnostycznych.
T-A-7Dobór wartości granicznych.
T-A-8Ocena niezawodności logicznego układu kombinacyjnego.
T-W-2Gospodarka remontowa, organizacja remontów. Naprawa zespołów mechanicznych i elektronicznych.
T-W-4Trwałość i niezawodność. Funkcje i miary niezawodności, trwałość, podstawowe zależności.
T-W-3Wycofanie obiektu z użytkowania, utylizacja i recykling. Czynniki i procesy powodujące zmiany stanu technicznego i uszkodzenia elementów maszyn oraz urządzeń. Niesprawność.
T-W-5Modelowanie procesów życia obiektów. Układy szeregowe, równoległe i złożone.
T-W-6Modele uszkodzeń. Przykłady oceny niezawodności.
T-W-7Systemy naprawialne. Podnoszenie niezawodności i jej koszty, redundancja. Testowanie żywotności.
T-W-8Stan techniczny obiektu. Diagnozowanie. Modele diagnostyczne.
T-W-1Metody utrzymania urządzeń w gotowości technicznej. System obsługi.
Metody nauczaniaM-1Wykład informacyjny.
M-2Ćwiczenia audytoryjne.
Sposób ocenyS-2Ocena podsumowująca: Oceana analityczna - średnia ze stopni z pisemnych sprawdzianów wiedzy przekazanej na wykładzie i zdobytej samodzielnie oraz umiejętność rozwiązywania zadań.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzą z zakresu przedmiotu. Nie portafi kojarzyć i analizaować nabytej wiedzy. Czasaem nie wie jak ją wykorzystać.
3,5Student opanował wiedzę w stopniu średnim między oceną 3.0 i 4.0.
4,0Student opanował podstawową wiedzę z zakresu przedmiotu. Zna ograniczenia i obszary jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4.0 i 5.0.
5,0Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary jej stosowania.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięME_1A_C02-1_U01W wyniku przeprowadzonych zajęć student powinien umieć: - zinterpretować podstawowe wskaźniki związane z niezawodnością i eksploatacją układów mechatronicznych - zastosować metody utrzymania urządzeń w gotowości technicznej do konkretnych obiektów - zinterpretować czynniki i procesy powodujące zmiany stanu technicznego i uszkodzenia elementów maszyn - obliczać niezawodność i trwałość układy szeregowych, równoległych i złożonych - dobierać metodę podniesienia niezawodności układu
Odniesienie do efektów kształcenia dla kierunku studiówME_1A_U14Potrafi zastosować odpowiednie obiektywne metody celem oceny rozwiązań technicznych, organizacyjnych i procesów usługowych w obszarze mechatroniki.
ME_1A_U15Potrafi zaprojektować i zrealizować proste urządzenie mechatroniczne oraz ocenić uzyskany wynik stosując właściwe metody, techniki i narzędzia.
ME_1A_U13Potrafi sformułować proste zadania inżynierskie oraz poprawnie ocenić przydatność różnych metod i narzędzi do ich rozwiązania.
Cel przedmiotuC-2Nabycie umiejętności oceny niezawodności prostych urządzeń mechatronicznych.
Treści programoweT-A-1Obliczanie wskaźników oceny procesu eksploatacji pojedynczego obiektu i grupy obiektów technicznych.
T-A-2Wyszukiwanie słabych ogniw.
T-A-3Wyznaczanie trwałości maszyn i środków transportowych na podstawie wyników badań.
T-A-4Estymowanie parametrów niezawodności.
T-A-5Prognozowanie niezawodności złożonych układów mechatronicznych.
T-A-6Wykorzystanie modeli obiektów. Analiza sygnałów diagnostycznych.
T-A-7Dobór wartości granicznych.
T-A-8Ocena niezawodności logicznego układu kombinacyjnego.
Metody nauczaniaM-1Wykład informacyjny.
M-2Ćwiczenia audytoryjne.
Sposób ocenyS-1Ocena formująca: Oceana analityczna - średnia ze stopni ze sprawdzianów z zdaniami rachunkowymi.
Kryteria ocenyOcenaKryterium oceny
2,0Nie potrafi poprawnie rozwiązywać zadań. Przy wykonywaniu ćwiczeń nie potrafi wyjaśnić metody obliczeniowej oraz konieczności obliczeń. Ma problemy z formułowaniem wniosków.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Student rozwiązuje zadania metodami nieoptymalnymi. Popełnia pomyłki w obliczeniach. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny.
3,5Student posiadł umiejętności w stopniu pośrednim, między oceną 3,0 i 4,0.
4,0Student ma umiejętności kojarzenia i analizy nabytej wiedzy. Zadania najczęściej rozwiązuje metodami optymalnymi. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny, potrafi interpretować wyniki pomiarów. W sposób dobry opanować nazewnictwo z zakresu eksploatacji urządzań.
4,5Student posiadł umiejętności w stopniu pośrednim, między oceną 4,0 i 5,0.
5,0Student ma umiejętności kojarzenia i analizy nabytej wiedzy. Zadania rozwiązuje metodami optymalnymi. Potrafi wykorzystywać właściwe metody obliczeniowe. Ćwiczenia praktyczne realizuje wzorowo, w sposób aktywny, potrafi ocenić metodę i wyniki obliczeń. Opanował nazewnictwo z zakresu eksploatacji urządzań.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięME_1A_C02-1_K01Ćwiczenia w grupie kształtują właściwa postawę studenta do efektywnej współpracy w zespole. Student rozumie potrzebę nabywania nowej wiedzy.
Odniesienie do efektów kształcenia dla kierunku studiówME_1A_K01Rozumie potrzebę ciągłego uczenia się celem utrzymania poziomu i podnoszenia kompetencji zawodowych, osobistych i społecznych.
ME_1A_K03Potrafi pracować i współdziałać w grupie.
Cel przedmiotuC-1Poznanie zasad eksploatacji układów mechatronicznych. Poznanie metod diagnozowania i nadzoru.
Treści programoweT-A-1Obliczanie wskaźników oceny procesu eksploatacji pojedynczego obiektu i grupy obiektów technicznych.
T-A-2Wyszukiwanie słabych ogniw.
T-A-4Estymowanie parametrów niezawodności.
T-A-5Prognozowanie niezawodności złożonych układów mechatronicznych.
Metody nauczaniaM-1Wykład informacyjny.
M-2Ćwiczenia audytoryjne.
Sposób ocenyS-3Ocena podsumowująca: Ocena kompetencji personalnych i społecznych - intuicujna w formie aprobaty.
Kryteria ocenyOcenaKryterium oceny
2,0Student biernie uczestniczy w zajęciach, nie angażuje się w pracy zespołu.
3,0Student biernie uczestniczy w zajęciach, realizuje proste prace zlecone mu przez innych członków zespołu, wymaga stałego nadzoru.
3,5Student posiadł kompetencje w stopniu pośrednim między oceną 3,0 i 4,0.
4,0Student czynnie uczestniczy w zajęciach, samodzielnie realizuje powierzoną mu część zadania. Poprafi ocenić i projektować konstrukcje o wymagalenj niezawodności.
4,5Student posiadł kompetencje w stopniu pośrednim między oceną 4,0 i 5,0.
5,0Student czynnie uczestniczy w zajęciach, samodzielnie realizuje powierzoną mu część zadania. Pomaga innym członkom zespołu w realizacji ich zadań. Aktywnie uczestniczy w dyskusjach nad rozwiązywanymi przez zespół problemami. Jest kreatywny chętny do współpracy i wykazuje cechy lidera zespołu. Bardzo dobrze ocenia i projektuje konstrukcje o wymagalenj niezawodności.