Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i robotyzacja przemysłu (S1)
Sylabus przedmiotu Ochrona środowiska w energetyce:
Informacje podstawowe
Kierunek studiów | Mechanika i robotyzacja przemysłu | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Ochrona środowiska w energetyce | ||
Specjalność | Energetyka | ||
Jednostka prowadząca | Katedra Technologii Energetycznych | ||
Nauczyciel odpowiedzialny | Sławomir Wiśniewski <Slawomir.Wisniewski@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Podstawy ochrony środowiska, matematyka, termodynamika techniczna |
W-2 | Podstawy chemii |
W-3 | Podstawy fizyki |
W-4 | Podstawy termodynamiki |
W-5 | Technologie spalania |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studentów z obciążeniami środowiskowymi wynikającymi z funkcjonowania systemów energetycznymi oraz technologiami i urządzeniami umożliwiającymi przeciwdziałanie tym obciążeniom. |
C-2 | Zapoznanie studentów z metodami określania emisji zanieczyszczeń w systemach energetycznych oraz praktycznymi metodani ograniczania tych zanieczyszczeń. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | Przykłady obliczeniowe ilustrujące tematykę prezentowaną w trakcie wykładów. Kolokwium zaliczające. | 15 |
15 | ||
projekty | ||
T-P-1 | Zadanie projektowe polegające na doborze urządzenia odpylającego dla wybranego procesu przemysłowego (z uwzględnieniem aktualnych aktów prawnych). | 15 |
15 | ||
wykłady | ||
T-W-1 | Wprowadzenie. Wpływ różnych technologii energetycznych na środowisko (energetyka konwencjonalna, energetyka jądrowa, energetyka oparta na zasobach odnawialnych). Identyfikacja zagrożeń środowiskowych i źródeł emisji w poszczególnych systemach energetycznych: zanieczyszczenie powietrza, gleby, wód powierzchniowych i gruntowych, hałas, promieniowanie jonizujące, ochrona krajobrazu. Określanie emisji zanieczyszczeń w konwencjonalnych systemach energetycznych: emisja dwutlenku węgla CO2, związków siarki, tlenków azotu i pyłu. Odpylanie gazów. Zasady odpylania gazów, kryteria doboru odpylaczy, rodzaje odpylaczy: grawitacyjne, inercyjno-uderzeniowe, odśrodkowe, filtracyjne, elektrofiltry, odpylacze mokre. Metody odsiarczania spalin: sucha, półsucha, mokra oraz wiązki elektronowej i inne. Ograniczenie emisji tlenków azotu na etapie procesu spalania, usuwanie tlenków azotu ze spalin.. Wpływ składowisk popiołu na środowisko. Wpływ otwartych i zamkniętych systemów chłodzenia skraplaczy na środowisko (dopuszczalne temperatury wód powierzchniowych, hałas z chłodni kominowych itp.). Omówienie technologii zmniejszających obciążenia środowiskowe w siłowniach energetycznych: układy opylania i odsiarczania spalin, niskoemisyjne technologie spalania, technologie spalania tlenowego. Określanie efektów ekologicznych przy stosowaniu odnawialnych źródeł energii. Zaliczenie pisemne. | 30 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | Uczestnictwo w zajęciach | 15 |
A-A-2 | Samodzielna praca | 10 |
25 | ||
projekty | ||
A-P-1 | Uczestnictwo w zajęciach. | 15 |
A-P-2 | Praca własna. | 10 |
25 | ||
wykłady | ||
A-W-1 | Uczestnictwo w zajęciach | 30 |
A-W-2 | Praca własna studenta. | 20 |
50 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny |
M-2 | Wykład problemowy |
M-3 | Dyskusja dydaktyczna |
M-4 | Ćwiczenia przedmiotowe |
M-5 | Metoda podajaca- wykład informacyjny z wykorzystaniem prezentacji multimedialnej |
M-6 | Metoda praktyczna - ćwiczenia laboratoryjne, zajęcia w elektrociepłowni. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Zaliczenie pisemne. |
S-2 | Ocena formująca: Kolokwium sprawdzające opanowanie materiału zrealizowanego na ćwiczeniach audytoryjnych, aktywność na zajęciach (rozwiązywanie zadań przy tablicy). |
S-3 | Ocena podsumowująca: Wykonanie zadania w ramach zajęć projektowych. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
MRP_1A_null_W01 Student potrafi wskazać główne źródła emisji zanieczyszczeń do środowiska w systemach energetycznych. Potrafi wymienić i scharakteryzować te zanieczyszczenia, objaśniać ich niekorzystny wpływ na środowisko oraz opisać podstawowe procesy i urządzenia wykorzystywane w ograniczaniu negatywnego wpływu energetyki na środowisko i mieć scharakteryzować różne technologie i urządzenia do oczyszczania spalin. | MRP_1A_W03, MRP_1A_W02 | — | — | C-1, C-2 | T-A-1, T-W-1 | M-1, M-2, M-3, M-4 | S-1, S-2 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
MRP_1A_null_U01 Student potrafi obliczać wielkość emisji zanieczyszczeń generowanych przez system energetyczny oraz powinien umieć zidentyfikować zanieczyszczenia powietrza oraz spalin, dobrać właściwe technologie i urządzenia do oczyszczania spalin. Potrafi określić efekty ekologiczne przy stosowaniu odnawialnych źródeł energii. | MRP_1A_U08, MRP_1A_U07, MRP_1A_U09 | — | — | C-1, C-2 | T-A-1, T-W-1, T-P-1 | M-1, M-2, M-3, M-4 | S-1, S-2 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
MRP_1A_null_K01 Student ma świadomość odpowiedzialności za podejmowane decyzje oraz ma świadomość negatywnego oddziaływania procesów przemysłowych na środowisko. | MRP_1A_K01 | — | — | C-1, C-2 | T-A-1, T-W-1, T-P-1 | M-1, M-2, M-3, M-4 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
MRP_1A_null_W01 Student potrafi wskazać główne źródła emisji zanieczyszczeń do środowiska w systemach energetycznych. Potrafi wymienić i scharakteryzować te zanieczyszczenia, objaśniać ich niekorzystny wpływ na środowisko oraz opisać podstawowe procesy i urządzenia wykorzystywane w ograniczaniu negatywnego wpływu energetyki na środowisko i mieć scharakteryzować różne technologie i urządzenia do oczyszczania spalin. | 2,0 | Student nie zna głównych źródeł emisji zanieczyszczeń do środowiska w systemach energetycznych. Nie potrafi scharakteryzować tych zanieczyszczeń oraz opisać podstawowych procesów i urządzeń wykorzystywanych w ograniczaniu negatywnego wpływu energetyki na środowisko. |
3,0 | Student słabo zna główne źródła emisji zanieczyszczeń do środowiska w systemach energetycznych. Potrafi pobieżnie scharakteryzować tylko niektóre z tych zanieczyszczeń. | |
3,5 | Student dobrze zna główne źródła emisji zanieczyszczeń do środowiska w systemach energetycznych. Potrafi pobieżnie scharakteryzować tylko niektóre z tych zanieczyszczeń. | |
4,0 | Student dobrze zna główne źródła emisji zanieczyszczeń do środowiska w systemach energetycznych. Potrafi scharakteryzować niektóre z tych zanieczyszczeń oraz opisuje większość podstawowych procesów wykorzystywanych w ograniczaniu negatywnego wpływu energetyki na środowisko. | |
4,5 | Student dobrze zna główne źródła emisji zanieczyszczeń do środowiska w systemach energetycznych. Dobrze charakteryzuje te zanieczyszczenia oraz opisuje większość podstawowych procesów i urządzeń wykorzystywanych w ograniczaniu negatywnego wpływu energetyki na środowisko. | |
5,0 | Student bardzo dobrze zna główne źródła emisji zanieczyszczeń do środowiska w systemach energetycznych. Bardzo dobrze charakteryzuje te zanieczyszczenia oraz opisuje podstawowe procesy i urządzenia wykorzystywane w ograniczaniu negatywnego wpływu energetyki na środowisko. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
MRP_1A_null_U01 Student potrafi obliczać wielkość emisji zanieczyszczeń generowanych przez system energetyczny oraz powinien umieć zidentyfikować zanieczyszczenia powietrza oraz spalin, dobrać właściwe technologie i urządzenia do oczyszczania spalin. Potrafi określić efekty ekologiczne przy stosowaniu odnawialnych źródeł energii. | 2,0 | Student nie potrafi obliczać emisji zanieczyszczeń generowanych przez system energetyczny, nie umie oceniać przydatności technologii ograniczających te emisje oraz nie umie określić efektów ekologicznych przy stosowaniu odnawialnych źródeł energii. |
3,0 | Student popełnia wiele błędów przy obliczaniu emisji zanieczyszczeń generowanych przez system energetyczny i ocenianiu przydatności technologii ograniczających te emisje. | |
3,5 | Student popełnia niewiele błędów przy obliczaniu emisji zanieczyszczeń generowanych przez system energetyczny, poprawnie oceniania przydatności niektórych technologii ograniczających te emisje. | |
4,0 | Student popełnia niewiele błędów przy obliczaniu emisji zanieczyszczeń generowanych przez system energetyczny, poprawnie oceniania przydatności większości technologii ograniczających te emisje. Popełnia niewiele błędów przy określaniu efektów ekologicznych wynikających ze stosowania odnawialnych źródeł energii. | |
4,5 | Student popełnia drobne błędów przy obliczaniu emisji zanieczyszczeń generowanych przez system energetyczny, poprawnie oceniania przydatności technologii ograniczających te emisje. Poprawnie określa efekty ekologiczne wynikające ze stosowania odnawialnych źródeł energii. | |
5,0 | Student nie popełnia błędów przy obliczaniu emisji zanieczyszczeń generowanych przez system energetyczny, poprawnie oceniania przydatności technologii ograniczających te emisje. Poprawnie określa efekty ekologiczne wynikające ze stosowania odnawialnych źródeł energii. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
MRP_1A_null_K01 Student ma świadomość odpowiedzialności za podejmowane decyzje oraz ma świadomość negatywnego oddziaływania procesów przemysłowych na środowisko. | 2,0 | Student nie potrafi określić negatywnych skutków oddziaływania procesów przemysłowych na środowisko |
3,0 | Student słabo określa niektóre negatywne skutki oddziaływania procesów przemysłowych na środowisko | |
3,5 | Student słabo określa negatywne skutki oddziaływania procesów przemysłowych na środowisko | |
4,0 | Student dobrze potrafi określić negatywne skutki oddziaływania procesów przemysłowych na środowisko | |
4,5 | Student dobrze potrafi określić i ocenić negatywne skutki oddziaływania procesów przemysłowych na środowisko | |
5,0 | Student bardzo dobrze potrafi określić i ocenić negatywne skutki oddziaływania procesów przemysłowych na środowisko |
Literatura podstawowa
- Jerzy Kucowski, Damazy Laudyn, Mieczysław Przekwas, Energetyka a ochrona środowiska, Wydawnictwa Naukowo-Techniczne, Warszawa, 1997
- Gronowicz j, Ochrona środowiska w transporcie lądowym, Politechnika Poznańska ; Instytut Technologii Eksploatacji, Poznań ; Radom, 2004
- J.Konieczyński, Oczyszczanie gazów odlotowych, Politechnika Śląska, Gliwice, 1993
- Warych J., Oczyszczanie gazów. Procesy i aparatura., WNT, Warszawa, 1998
- pod red. Maksymiliana Cherki, Energetyka i ochrona środowiska w procesie inwestycyjnym, Oficyna a Wolters Kluwer business, Warszawa, 2010
- Błażej Wierzbowski, Bartosz Rakoczy, Podstawy prawa ochrony środowiska, Wydawnictwo Prawnicze LexisNexis, Warszawa, 2005
- Aleksander Lipiński, Prawne podstawy ochrony środowiska, Wolters Kluwer Polska Sp. z o.o., Warszawa, 2007
- red. Henryk Sasinowski., ENERGETYKA a środowisko, Politechnika Białostocka, Białystok, 1996
Literatura dodatkowa
- Bazy danych prenumerowane na uczelni, Knovel Books, 2011