Pole | KOD | Znaczenie kodu |
---|
Zamierzone efekty uczenia się | MRP_1A_null_W01 | Student ma wiedzę w zakresie zależności pomiędzy budową chemiczną, strukturą, defektami struktury a właściwosciami elektrycznymi, mechanicznymi i fizykochemicznymi materiałów stanowiacych podstawę wiedzy o materiałach, w tym materiałach konstrukcyjnych. Student objaśnia procesy chemiczne i fizyczne niezbędne do zrozumienia podstaw procesów wytwarzania energii cieplnej, elektrycznej i fotoelektrycznej. |
---|
Odniesienie do efektów kształcenia dla kierunku studiów | MRP_1A_W01 | Zna i rozumie w zaawansowanym stopniu wybrane fakty, obiekty i zjawiska oraz dotyczące ich metody i teorie wyjaśniające złożone zależności między nimi, stanowiące podstawową wiedzę ogólną z zakresu dyscyplin naukowych tworzących podstawy teoretyczne dla dyscypliny inżynieria mechaniczna |
---|
Cel przedmiotu | C-1 | Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z chemii i wybranych zagadnień fizykochemii. |
---|
C-2 | Student zdobywa wiedzę i umiejętność stosowania metod matematycznych do opisu procesów chemicznych i wybranych fizykochemicznych. |
C-3 | Student zdobywa umiejętość korzystania ze źródeł literatury, baz danych fizykochemicznych. |
Treści programowe | T-W-1 | Konfiguracja elektronowa atomów. Wiązania międzyatomowe. Wiązania międzycząsteczkowe. Hierarchiczny model struktury materiału: konfiguracja elektronowa atomów, charakter wiązania, struktura, defekty struktury krystalicznej. Właściwości chemiczne i fizyczne materiałów. Podział i charakterystyka podstawowych grup materiałów i ich znaczenie w technice.
Stany skupienia materii: gazy, ciecze, ciała stałe. Prawa stanu gazowego. Chemia roztworów wodnych. Klasyfikacja prostych i złożonych substancji oraz reakcji chemicznych. Równowaga chemiczna. Elementy termodynamiki chemicznej. Kinetyka chemiczna. Elektrolity. Procesy utleniania i redukcji. Podstawy elektrochemii: potencjał elektrodowy, równowagowy, stacjonarny. Zjawisko polaryzacji i przyczyny. Ogniwa galwaniczne. Zjawisko elektrolizy. Prawa Faradaya. |
---|
Metody nauczania | M-1 | Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe. |
---|
M-2 | Ćwiczenia audytoryjneRozwiazywanie zadań problemowych i rachunkowych, analiza zjawisk chemicznych w procesach inzynierskich. |
Sposób oceny | S-1 | Ocena podsumowująca: Wykład. Student przystępuje do zaliczenia pisemnego; ocenę pozytywną otrzymują po uzyskaniu co najmiej połowy punktów. Do zaliczenia ustnego przystępują studenci, którzy uzyskali uzyskali ok od 30 do 50% punktów z pracy pisemnej. |
---|
S-2 | Ocena podsumowująca: Ćwiczenia audytoryjne. Student przystępuje do zaliczenia pisemnego; ocenę pozytywną otrzymują po uzyskaniu powyżej 60% punktów z pracy pisemnej. |
S-3 | Ocena formująca: Aktywność na wykładzie i podczas konsulatacji. |
Kryteria oceny | Ocena | Kryterium oceny |
---|
2,0 | Student nie ma wiedzy w zakresie zależności pomiędzy budową chemiczną, strukturą, defektami struktury a właściwosciami elektrycznymi, mechanicznymi i fizykochemicznymi materiałów stanowiacych podstawę wiedzy o materiałach, w tym materiałach konstrukcyjnych. Student nie wyjaśni procesów chemicznych i fizycznych niezbędnych do zrozumienia podstaw procesów wytwarzania energii cieplnej, elektrycznej i fotoelektrycznej. |
3,0 | Student ma podstawową wiedzę w zakresie zależności pomiędzy budową chemiczną, strukturą, defektami struktury a właściwosciami elektrycznymi, mechanicznymi i fizykochemicznymi materiałów stanowiacych podstawę wiedzy o materiałach, w tym materiałach konstrukcyjnych. Student objaśnia procesy chemiczne i fizyczne niezbędne do zrozumienia podstaw procesów wytwarzania energii cieplnej, elektrycznej i fotoelektrycznej. |
3,5 | Student ma wiedzę w zakresie zależności pomiędzy budową chemiczną, strukturą, defektami struktury a właściwosciami elektrycznymi, mechanicznymi i fizykochemicznymi materiałów stanowiacych podstawę wiedzy o materiałach, w tym materiałach konstrukcyjnych. Student objaśnia procesy chemiczne i fizyczne niezbędne do zrozumienia podstaw procesów wytwarzania energii cieplnej, elektrycznej i fotoelektrycznej.Student zna przykłady materiałów, na przykładzie których potrafi skorelować budowę chemiczną z właściwościami. |
4,0 | Student ma wiedzę w zakresie zależności pomiędzy budową chemiczną, strukturą, defektami struktury a właściwosciami elektrycznymi, mechanicznymi i fizykochemicznymi materiałów stanowiacych podstawę wiedzy o materiałach, w tym materiałach konstrukcyjnych. Student objaśnia procesy chemiczne i fizyczne niezbędne do zrozumienia podstaw procesów wytwarzania energii cieplnej, elektrycznej i fotoelektrycznej.Student zna przykłady materiałów, na przykładzie których potrafi skorelować budowę chemiczną z właściwościami, potrafi wyróżnić zjawiska chemiczne i fizyczne w złożonych procesach wytwarzania energii. |
4,5 | Student ma zaawansowaną wiedzę w zakresie zależności pomiędzy budową chemiczną, strukturą, defektami struktury a właściwosciami elektrycznymi, mechanicznymi i fizykochemicznymi materiałów stanowiacych podstawę wiedzy o materiałach, w tym materiałach konstrukcyjnych. Student objaśnia procesy chemiczne i fizyczne niezbędne do zrozumienia podstaw procesów wytwarzania energii cieplnej, elektrycznej i fotoelektrycznej.Student zna przykłady materiałów, na przykładzie których potrafi skorelować budowę chemiczną z właściwościami, potrafi wyróżnić zjawiska chemiczne i fizyczne w złożonych procesach wytwarzania energii. |
5,0 | Student ma zaawansowaną wiedzę w zakresie zależności pomiędzy budową chemiczną, strukturą, defektami struktury a właściwosciami elektrycznymi, mechanicznymi i fizykochemicznymi materiałów stanowiacych podstawę wiedzy o materiałach, w tym materiałach konstrukcyjnych. Student objaśnia procesy chemiczne i fizyczne niezbędne do zrozumienia podstaw procesów wytwarzania energii cieplnej, elektrycznej i fotoelektrycznej.Student zna przykłady materiałów, na przykładzie których potrafi skorelować budowę chemiczną z właściwościami, potrafi wyróżnić zjawiska chemiczne i fizyczne w złożonych procesach wytwarzania energii. Zna podstawy obliczeń chemicznych i fizykochemicznych potrzebne do opisu ilościowego. |