Wydział Inżynierii Mechanicznej i Mechatroniki - Inżynieria materiałowa (S1)
Sylabus przedmiotu Grafika inżynierska II:
Informacje podstawowe
Kierunek studiów | Inżynieria materiałowa | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Grafika inżynierska II | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Mechaniki | ||
Nauczyciel odpowiedzialny | Magdalena Kosecka-Nowak <Magdalena.Bockowska@zut.edu.pl> | ||
Inni nauczyciele | Jacek Zapłata <Jacek.Zaplata@zut.edu.pl> | ||
ECTS (planowane) | 3,0 | ECTS (formy) | 3,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Matematyka - elementy geometrii analitycznej płaskiej i przestrzennej |
W-2 | Informatyka - podstawy obsługi komputera i systemów operacyjnych |
W-3 | Grafika inżynierska - zasady graficznego zapisu konstrukcji |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Kształtowanie umiejętności efektywnego komunikowania się w języku inżynierskim przez nabycie umiejetności stosowania nowoczesnych technik i narzędzi projektowania inżynierskiego |
C-2 | Kształtowanie wyobraźni przestrzennej, czytania i interpretowania tradycyjnych 2W rysunków technicznych maszynowych |
C-3 | Utrwalenie zasad zapisu konstrukcji podstawowych części maszyn zgodnie z normami rysunku technicznego maszynowego |
C-4 | Ukształtowanie umiejętności parametrycznego modelowania bryłowego na bazie systemu SolidWorks, w zakresie użytkowania go na poziomie CSWA – Certified SolidWorks Associate |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
projekty | ||
T-P-1 | Podstawy modelowania. | 2 |
T-P-2 | Operacja bazowa - szkic - wybór najlepszego profilu i płaszczyzny. | 2 |
T-P-3 | Relacje symetryczności, lustro w szkicu i operacja lustro. | 2 |
T-P-4 | Zastosowanie związków funkcyjnych w modelowaniu parametrycznym. | 2 |
T-P-5 | Korzystanie z geometrii już istniejącej do definiowania nowej. Relacje. Połączenie wymiarów ze zmienną globalną, wykorzystanie w równaniach parametrów wcześniejszych operacji. | 2 |
T-P-6 | Operacje kopiowania, szyk liniowy i kołowy, przenieś/kopiuj. | 2 |
T-P-7 | Modelowanie części klasa piasta. Wykorzystanie kreatora otworów do tworzenia otworów gwintowanych. | 2 |
T-P-8 | Tworzenie szablonu rysunku. Rysunek piasty – rysunki rzutów z układem wymiarów. | 2 |
T-P-9 | Rysunek piasty – opis rysunku: wymiary i adnotacje rysunku wykonawczego. | 2 |
T-P-10 | Żebro z rysunkiem, przekrój stopniowy. | 2 |
T-P-11 | Kolokwium z modelowania części i tworzenia rysunku. | 2 |
T-P-12 | Tworzenie złożeń z gotowych części. Prezentacja modelu. Tworzenie dokumentacji 2D do złożenia z rozstrzelonymi widokami. Uzupełnianie tabeli elementów złożenia właściwościami dostosowanymi części. | 4 |
T-P-13 | Egzamin CSWA. Zaliczenie. | 4 |
30 | ||
wykłady | ||
T-W-1 | Wykład wprowadzający - komputerowe wspomaganie projektowania, systemy CAD. Wprowadzenie do systemu SOLIDWORKS. | 1 |
T-W-2 | Podstawy modelowania parametrycznego. Operacja bazowa - wybór najlepszego profilu i płaszczyzny szkicu operacji bazowej. Intencja projektu. | 1 |
T-W-3 | Symetryczność w konstrukcji i jej znaczenie dla procedury modelowania konstrukcji. | 1 |
T-W-4 | Definiowanie wymiarów równaniami zgodnie z intencją projektu. Korzystanie z geometrii wcześniej zdefiniowanej w modelu przy definiowaniu kolejnych etapów procedury modelowania konstrukcji. | 1 |
T-W-5 | Operacje kopiowania jako narzędzia optymalizujące strukturę modelu. | 1 |
T-W-6 | Kreator otworów – jak i kiedy go stosować. | 1 |
T-W-7 | Szablony dokumentów. Tworzenie szablonu zgodnie z zasadami rysunku technicznego maszynowego. Wyjaśnienie wymagań do zadania domowego 1. | 1 |
T-W-8 | Tworzenie konstrukcji klasy wałek wraz z dokumentacją techniczną. Wyrwania, przekroje a kłady. | 1 |
T-W-9 | Przekroje części symetrycznych, części obrotowych o regularnie rozmieszczonych szczegółach konstrukcyjnych, np. otworach, ściankach. Tworzenie elementów typu żebro. | 1 |
T-W-10 | Operacja wyciągania po ścieżce. Prosta część wieloobiektowa z łącznikiem. Łącznik w rysunku. Przekrój stopniowy. | 1 |
T-W-11 | Wyciąganie po profilach. Operacja kopuła. Geometria odniesienia. Tworzenie płaszczyzn. | 1 |
T-W-12 | Modelowanie złożeń od dołu w górę, czyli tworzenie złożenia z gotowych części. Inteligentne wiązania Smart Mates. | 1 |
T-W-13 | Prezentacja modelu złożenia. Rysunek złożenia z rozstrzelonym widokiem i specyfikacją elementów. Modyfikacja tabeli elementów. Właściwości dostosowane części i złożeń. Przeprowadzanie wykrywania kolizji przy poruszaniu części w złożeniu. | 1 |
T-W-14 | Certyfikacja SOLIDWORKS na poziomie CSWA jako weryfikacja umiejętności i element konkurencyjności na rynku pracy. Zadanie domowe 2: egzamin próbny CSWA jako przygotowanie do egzaminu CSWA. Prezentacja przykładowych zadań egzaminu rzeczywistego. Właściwości masy. | 1 |
T-W-15 | Podstawy projektowania form. | 1 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
projekty | ||
A-P-1 | uczestnictwo w zajęciach | 30 |
A-P-2 | Na podstawie dwóch rzutów prostokątnych (widoki z zaznaczeniem niewidocznych fragmentów postaci konstrukcji liniami kreskowymi) tworzenie w pełni parametrycznego modelu części dokonując doboru optymalnego układu wymiarów dla danych wymiarów gabarytowych. | 5 |
A-P-3 | Tworzenie rysunku wg zasad PN rysunku technicznego maszynowego z optymalnym układem rzutów bez zastosowania pokazania krawędzi niewidocznych. Należy niewidoczne fragmenty postaci konstrukcji pokazać stosując przekroje, kłady, widoki i przekroje częściowe. | 5 |
A-P-4 | Przygotowanie do CSWA. Realizacja próbnego egzaminu CSWA. | 5 |
A-P-5 | Konsultacje | 5 |
50 | ||
wykłady | ||
A-W-1 | uczestnictwo w zajęciach | 15 |
A-W-2 | konsultacje | 2 |
A-W-3 | przygotowanie do kolokwium | 4 |
A-W-4 | praca z samouczkiem SolidWorks | 5 |
26 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | podająca - wykład informacyjny z użyciem prezentacji multimedialnych, tablicy |
M-2 | programowana i praktyczna - pokaz z użyciem komputera |
M-3 | problemowa – dyskusja dydaktyczna związana z wykładem i pokazem |
M-4 | praktyczna - ćwiczenia projektowe z użyciem komputera |
M-5 | praktyczna - metoda projektów |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Ocena z uwagami modelu części: prawidłowości jego budowy geometrycznej, parametryczności modelu i optymalności realizacji. Ocena niedostateczna wymaga poprawy, ocena pozytywna <5 umożliwia poprawę i ponowną ocenę podsumowującą. |
S-2 | Ocena formująca: Ocena z uwagami rysunku części: staranności i zgodności wykonania dokumentacji z zasadami rysunku technicznego maszynowego oraz umiejętności wykorzystania systemu SolidWorks. Ocena niedostateczna wymaga poprawy, ocena pozytywna <5 umożliwia poprawę i ponowną ocenę podsumowującą. |
S-3 | Ocena formująca: Ocena z uwagami doboru układu wymiarów w modelu części i układu rzutów w dokumentacji 2W. Dyskusja nad przyjętymi rozwiązaniami. Ocena niedostateczna wymaga poprawy, ocena pozytywna <5 umożliwia poprawę i ponowną ocenę podsumowującą. |
S-4 | Ocena podsumowująca: Ocena odwzorowania modelu części na podstawie domunentacji 2W: prawidłowości budowy geometrycznej, parametryczności modelu i optymalności jego realizacji. |
S-5 | Ocena podsumowująca: Ocena odwzorowania rysunku części: staranności i zgodności wykonania dokumentacji z zasadami rysunku technicznego maszynowego oraz umiejętności wykorzystania systemu SolidWorks. |
S-6 | Ocena podsumowująca: Ocena testu wielokrotnego wyboru o tematyce parametryczne modelowanie bryłowe części, złożeń i tworzenie dokumentacji 2W. |
S-7 | Ocena podsumowująca: Ocena podsumowująca: Ocena proporcjonalna do wyniku egzaminu rzeczywistego CSWA realizowanego na Uczelni. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IM_1A_C30_W01 Student potrafi objaśnić technikę parametrycznego modelowania prostych i złożonych części maszyn z wykorzystaniem systemu SolidWorks. | IM_1A_W08 | — | — | C-4 | T-P-1, T-W-1 | M-3, M-2, M-5, M-1, M-4 | S-1, S-4, S-6, S-7 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IM_1A_C30_U01 Student posiada umiejętności użytkowania systemu SolidWorks na poziomie CSWA – Certified SolidWorks Associate | IM_1A_U03, IM_1A_U18 | — | — | C-1, C-4 | T-P-1, T-W-1 | M-3, M-2, M-5, M-4 | S-5, S-1, S-4, S-2, S-6, S-7 |
IM_1A_C30_U02 Student potrafi tworzyć parametryczne modele bryłowe prostych i złożonych części maszynowych | IM_1A_U03 | — | — | C-1, C-2, C-4 | T-P-1, T-W-1 | M-3, M-2, M-5, M-4 | S-1, S-4, S-7 |
IM_1A_C30_U03 Student potrafi wykonać dokumentację 2W modelu bryłowego części zgodnie z zasadami rysunku maszynowego przy użyciu systemu SolidWorks. | IM_1A_U03, IM_1A_U18 | — | — | C-3, C-1, C-2 | T-P-1, T-W-1 | M-2, M-5, M-4 | S-3, S-5, S-2, S-6 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IM_1A_C30_K01 Zajęcia praktyczne kształtują aktywność, samodzielność i kreatywność w poszukiwaniu efektywnych rozwiązań. | IM_1A_K01 | — | — | C-1 | T-P-1 | M-5, M-4 | S-3, S-1, S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IM_1A_C30_W01 Student potrafi objaśnić technikę parametrycznego modelowania prostych i złożonych części maszyn z wykorzystaniem systemu SolidWorks. | 2,0 | Student nie zna zasad parametrycznego modelowania części. |
3,0 | Student potrafi wymienić podstawowe techniki modelowania części i złożeń o prostej budowie geometrycznej. | |
3,5 | Student potrafi objaśnić większość technik parametrycznego modelowania bryłowego. | |
4,0 | Student potrafi prawidłowo zinterpretować i objaśnić sposób tworzenia parametrycznych modeli prostych i złożonych części maszyn. | |
4,5 | Student potrafi objaśnić i porównać techniki parametrycznego modelowania bryłowego prostych i złożonych części maszyn. | |
5,0 | Student potrafi objaśnić, porównać techniki parametrycznego modelowania bryłowego i wskazać ich optymalne zastosowanie przy tworzeniu części maszyn o różnym stopniu złożoności. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IM_1A_C30_U01 Student posiada umiejętności użytkowania systemu SolidWorks na poziomie CSWA – Certified SolidWorks Associate | 2,0 | Student nie potrafi wykorzystać narzędzi i technik parametrycznego modelowania w modelowaniu części o prostej budowie geometrycznej. |
3,0 | Student potrafi zastosować większość prostych technik i narzędzi modelowania SolidWorks w celu utworzenia modelu bryłowego części i złożeń o prostej budowie geometrycznej. | |
3,5 | Student potrafi zastosować większość technik i narzędzi modelowania SolidWorks w celu utworzenia modelu bryłowego części i złożeń o mniejszym stopniu złożoności. | |
4,0 | Student potrafi prawidłowo zinterpretować budowę i utworzyć model parametryczny dla prostych i złożonych części maszyn. | |
4,5 | Student potrafi zastosować, porównać różne techniki parametrycznego modelowania bryłowego prostych i złożonych części maszyn. | |
5,0 | Student potrafi zastosować efektywnie właściwe techniki parametrycznego modelowania bryłowego przy tworzeniu części maszyn o różnym stopniu złożoności. | |
IM_1A_C30_U02 Student potrafi tworzyć parametryczne modele bryłowe prostych i złożonych części maszynowych | 2,0 | Student nie potrafi wykorzystać narzędzi i technik parametrycznego modelowania w modelowaniu części o prostej budowie geometrycznej. |
3,0 | Student potrafi zastosować większość prostych technik i narzędzi modelowania SolidWorks w celu utworzenia modelu bryłowego części i złożeń o prostej budowie geometrycznej. | |
3,5 | Student potrafi zastosować większość technik i narzędzi modelowania SolidWorks w celu utworzenia modelu bryłowego części i złożeń o mniejszym stopniu złożoności. | |
4,0 | Student potrafi prawidłowo zinterpretować budowę i utworzyć model parametryczny dla prostych i złożonych części maszyn. | |
4,5 | Student potrafi zastosować, porównać różne techniki parametrycznego modelowania bryłowego prostych i złożonych części maszyn. | |
5,0 | Student potrafi zastosować efektywnie właściwe techniki parametrycznego modelowania bryłowego przy tworzeniu części maszyn o różnym stopniu złożoności. | |
IM_1A_C30_U03 Student potrafi wykonać dokumentację 2W modelu bryłowego części zgodnie z zasadami rysunku maszynowego przy użyciu systemu SolidWorks. | 2,0 | Student nie potrafi stosując system SolidWorks odwzorować dokumentacji 2W części maszynowych o prostej budowie geometrycznej, czyli nie potrafi stosować narzędzi automatycznego tworzenia rzutów i ich opisów. |
3,0 | Student potrafi stosując system SolidWorks odwzorować dokumentację 2W części maszynowych o prostej budowie geometrycznej w zakresie rzutów i ich wymiarów. | |
3,5 | Student potrafi stosując system SolidWorks odwzorować dokumentację 2W części maszynowych o średniej złożoności budowy geometrycznej w zakresie tworzenia rysunku wykonawczego. | |
4,0 | Student potrafi wykonać dokumentację 2W wykorzystując wszystkie zaproponowane w trakcie zajęć narzędzia i elementy do tworzenia rysunku wykonawczego. | |
4,5 | Student potrafi opracować dokumenrtację 2W części maszynowych o różnym stopniu złożoności z samodzielnym doborem rzutów i ich opisu przy zastosowaniu właściwych narzędzi i elementów tworzenia rysunku wykonawczego w systemie SolidWorks. | |
5,0 | Student potrafi opracować dokumenrtację 2W części maszynowych o różnym stopniu złożoności z optymalnym doborem rzutów i prawidłowego ich opisu przy zastosowaniu właściwych narzędzi i elementów tworzenia rysunku wykonawczego w systemie SolidWorks |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IM_1A_C30_K01 Zajęcia praktyczne kształtują aktywność, samodzielność i kreatywność w poszukiwaniu efektywnych rozwiązań. | 2,0 | Student nie potrafi samodzielnie modelować i tworzyć dokumntacji technicznej. |
3,0 | Student wykazuje ograniczoną samodzielność i kreatywność przy tworzeniu modeli i rysunków do nich. | |
3,5 | Student wymaga pomocy w zakresie wskazówek co do wyboru właściwych narzędzi i technik modelowania i towrzenia rysunku. | |
4,0 | Student pracuje samodzielnie na zajęciach i nad projektami domowymi. | |
4,5 | Student pracuje samodzielnie na zajęciach i nad projektami domowymi i wykazuje znaczną kreatywność. | |
5,0 | Student wykazuje pełną samodzielność, kreatywność i innowacyjność w trakcie pracy na zajęciach i nad projektami domowymi. |
Literatura podstawowa
- Tadeusz Dobrzański, Rysunek techniczny maszynowy, Wydawnictwa Naukowo-Techniczne, Warszawa, 2017, 26
- Tadeusz Lewandowski, Rysunektechniczny dlamechaników, WSiP, Warszawa, 2018, XIV
- Polski Komitet Normalizacji i Miar, Rysunek techniczny i rysunek techniczny maszynowy: zbiór polskich norm, Wydawnictwa Normalizacyjne Alfa, Warszawa, 2018
- SolidWorks, Instrukcja w języku polskim do aktualnego pakietu programu SolidWorks, wersja elektroniczna., SolidWorks, 2020, Pomoc SolidWorks. Samouczki SolidWorks.
Literatura dodatkowa
- Edward Lisowski, Modelowanie geometrii elementów maszyn i urządzeń w systemach CAD 3D : z przykładami w SolidWorks, Politechnika Krakowska, Kraków, 2011
- Edward Lisowski, Wojciech Czyżycki, Modelowanie elementów maszyn i urządzeń w systemie CAD 3D SolidWorks z aplikacjami, Politechnika Krakowska, Kraków, 2003
- Igor Rydzanicz, Rysunek techniczny jako zapis konstrukcji: zadania, Wydawnictwa Naukowo-Techniczne, 2009, Warszawa, 2009
- Jerzy Domański, SolidWorks 2017. Projektowanie maszyn i konstrukcji. Praktyczne przykłady., Helion, Gliwice, 2017