Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Inżynieria materiałowa (N2)
specjalność: spawalnictwo i techniki łączenia

Sylabus przedmiotu Zaawansowane metody badań:

Informacje podstawowe

Kierunek studiów Inżynieria materiałowa
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Zaawansowane metody badań
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Technologii Materiałowych
Nauczyciel odpowiedzialny Paweł Kochmański <Pawel.Kochmanski@zut.edu.pl>
Inni nauczyciele Agnieszka Kochmańska <Agnieszka.Kochmanska@zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 10 1,40,38zaliczenie
wykładyW1 10 0,60,62zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowe wiadomości z fizyki ciała stałego
W-2Zaliczenie przedmiotu "Metody i techniki badań II"

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Celem przedmiotu jest zapoznanie studenta z nowoczesnymi metodami badań dyfrakcyjnych i subtelnymi metodami badań powierzchni

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Wykonanie badań metodami dyfrakcji rentgenowskiej i elektronowej. Analiza jakościowa i ilościowa dyfraktogramów4
T-L-2Pomiary twardości, modułu Younga, przyczepności cienkich warstw metodą nanoindentacji3
T-L-3Badanie powierzchni metodą mikroskopii sił atomowych3
10
wykłady
T-W-1Metody dyfrakcyjne w badaniach strukturalnych. Dyfrakcja elektronowa, dyfrakcja rentgenowska4
T-W-2Pomiary właściwości mechanicznych metodą nanoindentacji2
T-W-3Metody badań powierzchni. Skaningowa mikroskopia tunelowa, mikroskopia sił atomowych4
10

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Aktywne uczestnictwo w zajęciach laboratoryjnych10
A-L-2przygotowanie do zajęć i opracowanie sprawozdań25
35
wykłady
A-W-1Uczestnictwo w wykładach7
A-W-2przygotowanie do zajęć8
15

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Zaliczenie tematyki wykładów
S-2Ocena podsumowująca: Zaliczenie poszczególnych ćwiczeń laboratoryjnych

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IM_2A_C02_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie dobierać metody badań i rozumieć podstawy fizyczne tych metod
IM_2A_W03C-1T-W-1, T-W-2, T-W-3, T-L-1, T-L-2, T-L-3M-1S-2, S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IM_2A_C02_U01
W wyniku przeprowadzonych zajęć student powinien umieć dobierać metody , zwłaszcza dyfrakcyjne, do badań struktur krystalicznych oraz metody badań powierzchni ciał stałych
IM_2A_U01, IM_2A_U12C-1T-W-1, T-W-2, T-W-3, T-L-1, T-L-2, T-L-3M-1S-2, S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IM_2A_C02_K01
W wyniku przeprowadzonych zajęć student powinien umieć dobierać metody , zwłaszcza dyfrakcyjne, do badań struktur krystalicznych oraz metody badań powierzchni ciał stałych
C-1T-W-1, T-W-2, T-W-3, T-L-1, T-L-2, T-L-3M-1S-2, S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
IM_2A_C02_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie dobierać metody badań i rozumieć podstawy fizyczne tych metod
2,0Student nie potrafi dobrać metod badawczych do opisania struktury materiałów konstrukcyjnych
3,0Student wykazuje ogólną orientację w tematyce metod badawczych
3,5Student potrafi dobrać metodę badawczą do opisania wybranych cech struktury
4,0Student potrafi dobrać metody badania struktury materiałów konstrukcyjnych
4,5Student potrafi wybrać i uzasadnić wybór metod badawczych do opisu struktury
5,0Student potrafi wybrać, uzasadnić wybór, proponować inne metody badania struktury materiałów konstrukcyjnych

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
IM_2A_C02_U01
W wyniku przeprowadzonych zajęć student powinien umieć dobierać metody , zwłaszcza dyfrakcyjne, do badań struktur krystalicznych oraz metody badań powierzchni ciał stałych
2,0Student nie potrafi dobrać metod badawczych do opisania struktury materiałów konstrukcyjnych
3,0Student wykazuje ogólną orientację w tematyce metod badawczych
3,5Student potrafi dobrać metodę badawczą do opisania wybranych cech struktury
4,0Student potrafi dobrać metody badania struktury materiałów konstrukcyjnych
4,5Student potrafi wybrać i uzasadnić wybór metod badawczych do opisu struktury
5,0Student potrafi wybrać, uzasadnić wybór, proponować inne metody badania struktury materiałów konstrukcyjnych

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
IM_2A_C02_K01
W wyniku przeprowadzonych zajęć student powinien umieć dobierać metody , zwłaszcza dyfrakcyjne, do badań struktur krystalicznych oraz metody badań powierzchni ciał stałych
2,0Student nie potrafi dobrać metod badawczych do opisania struktury materiałów konstrukcyjnych
3,0Student wykazuje ogólną orientację w tematyce metod badawczych
3,5Student potrafi dobrać metodę badawczą do opisania wybranych cech struktury
4,0Student potrafi dobrać metody badania struktury materiałów konstrukcyjnych
4,5Student potrafi wybrać i uzasadnić wybór metod badawczych do opisu struktury
5,0Student potrafi wybrać, uzasadnić wybór, proponować inne metody badania struktury materiałów konstrukcyjnych

Literatura podstawowa

  1. Kozubowski J., Metody transmisyjnej mikroskopii elektronowej, Wyd. Śląsk, Katowice, 1975
  2. Amelinckx S. et all, Handbook of microscopy, VCH, Weinheim, New York, Basel, Cambridge, Tokyo, 1997
  3. Bojarski Z., Łągiewka E., Rentgenowska analiza strukturalna, Wyd. Uniw. Śl., Katowice, 1995
  4. Oleś A., Metody eksperymentalne fizyki ciała stałego, WNT, Warszawa, 1998
  5. Fischer-Cripps A.C., Nanoindentation, Springer, Berlin, 2004

Literatura dodatkowa

  1. Jeleńkowski J. Wesołowski K., Ćwiczenia z rentgenowskiej analizy strukturalnej, PWN, Warszawa, 1981
  2. Lenart S. Kochmański P., Materiały doćwiczeń laboratoryjnych. Opracowania własne, 2008

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wykonanie badań metodami dyfrakcji rentgenowskiej i elektronowej. Analiza jakościowa i ilościowa dyfraktogramów4
T-L-2Pomiary twardości, modułu Younga, przyczepności cienkich warstw metodą nanoindentacji3
T-L-3Badanie powierzchni metodą mikroskopii sił atomowych3
10

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Metody dyfrakcyjne w badaniach strukturalnych. Dyfrakcja elektronowa, dyfrakcja rentgenowska4
T-W-2Pomiary właściwości mechanicznych metodą nanoindentacji2
T-W-3Metody badań powierzchni. Skaningowa mikroskopia tunelowa, mikroskopia sił atomowych4
10

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Aktywne uczestnictwo w zajęciach laboratoryjnych10
A-L-2przygotowanie do zajęć i opracowanie sprawozdań25
35
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w wykładach7
A-W-2przygotowanie do zajęć8
15
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIM_2A_C02_W01W wyniku przeprowadzonych zajęć student powinien być w stanie dobierać metody badań i rozumieć podstawy fizyczne tych metod
Odniesienie do efektów kształcenia dla kierunku studiówIM_2A_W03Ma wiedzę z zakresu nowoczesnych i zaawansowanych metod charakteryzowania niezbędną do doboru metod badawczych i interpretacji wyników
Cel przedmiotuC-1Celem przedmiotu jest zapoznanie studenta z nowoczesnymi metodami badań dyfrakcyjnych i subtelnymi metodami badań powierzchni
Treści programoweT-W-1Metody dyfrakcyjne w badaniach strukturalnych. Dyfrakcja elektronowa, dyfrakcja rentgenowska
T-W-2Pomiary właściwości mechanicznych metodą nanoindentacji
T-W-3Metody badań powierzchni. Skaningowa mikroskopia tunelowa, mikroskopia sił atomowych
T-L-1Wykonanie badań metodami dyfrakcji rentgenowskiej i elektronowej. Analiza jakościowa i ilościowa dyfraktogramów
T-L-2Pomiary twardości, modułu Younga, przyczepności cienkich warstw metodą nanoindentacji
T-L-3Badanie powierzchni metodą mikroskopii sił atomowych
Metody nauczaniaM-1Wykład informacyjny
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie poszczególnych ćwiczeń laboratoryjnych
S-1Ocena podsumowująca: Zaliczenie tematyki wykładów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi dobrać metod badawczych do opisania struktury materiałów konstrukcyjnych
3,0Student wykazuje ogólną orientację w tematyce metod badawczych
3,5Student potrafi dobrać metodę badawczą do opisania wybranych cech struktury
4,0Student potrafi dobrać metody badania struktury materiałów konstrukcyjnych
4,5Student potrafi wybrać i uzasadnić wybór metod badawczych do opisu struktury
5,0Student potrafi wybrać, uzasadnić wybór, proponować inne metody badania struktury materiałów konstrukcyjnych
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIM_2A_C02_U01W wyniku przeprowadzonych zajęć student powinien umieć dobierać metody , zwłaszcza dyfrakcyjne, do badań struktur krystalicznych oraz metody badań powierzchni ciał stałych
Odniesienie do efektów kształcenia dla kierunku studiówIM_2A_U01Potrafi pozyskiwać informacje z literatury, baz danych i innych źródeł; także w języku obcym; potrafi integrować uzyskane informacje, dokonywać ich interpretacji i krytycznej oceny, a także wyciągnąć wnioski oraz formułować i wyczerpująco uzasadniać opinie
IM_2A_U12Potrafi obsługiwać wybrane urządzenia technologiczne i pomiarowe
Cel przedmiotuC-1Celem przedmiotu jest zapoznanie studenta z nowoczesnymi metodami badań dyfrakcyjnych i subtelnymi metodami badań powierzchni
Treści programoweT-W-1Metody dyfrakcyjne w badaniach strukturalnych. Dyfrakcja elektronowa, dyfrakcja rentgenowska
T-W-2Pomiary właściwości mechanicznych metodą nanoindentacji
T-W-3Metody badań powierzchni. Skaningowa mikroskopia tunelowa, mikroskopia sił atomowych
T-L-1Wykonanie badań metodami dyfrakcji rentgenowskiej i elektronowej. Analiza jakościowa i ilościowa dyfraktogramów
T-L-2Pomiary twardości, modułu Younga, przyczepności cienkich warstw metodą nanoindentacji
T-L-3Badanie powierzchni metodą mikroskopii sił atomowych
Metody nauczaniaM-1Wykład informacyjny
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie poszczególnych ćwiczeń laboratoryjnych
S-1Ocena podsumowująca: Zaliczenie tematyki wykładów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi dobrać metod badawczych do opisania struktury materiałów konstrukcyjnych
3,0Student wykazuje ogólną orientację w tematyce metod badawczych
3,5Student potrafi dobrać metodę badawczą do opisania wybranych cech struktury
4,0Student potrafi dobrać metody badania struktury materiałów konstrukcyjnych
4,5Student potrafi wybrać i uzasadnić wybór metod badawczych do opisu struktury
5,0Student potrafi wybrać, uzasadnić wybór, proponować inne metody badania struktury materiałów konstrukcyjnych
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIM_2A_C02_K01W wyniku przeprowadzonych zajęć student powinien umieć dobierać metody , zwłaszcza dyfrakcyjne, do badań struktur krystalicznych oraz metody badań powierzchni ciał stałych
Cel przedmiotuC-1Celem przedmiotu jest zapoznanie studenta z nowoczesnymi metodami badań dyfrakcyjnych i subtelnymi metodami badań powierzchni
Treści programoweT-W-1Metody dyfrakcyjne w badaniach strukturalnych. Dyfrakcja elektronowa, dyfrakcja rentgenowska
T-W-2Pomiary właściwości mechanicznych metodą nanoindentacji
T-W-3Metody badań powierzchni. Skaningowa mikroskopia tunelowa, mikroskopia sił atomowych
T-L-1Wykonanie badań metodami dyfrakcji rentgenowskiej i elektronowej. Analiza jakościowa i ilościowa dyfraktogramów
T-L-2Pomiary twardości, modułu Younga, przyczepności cienkich warstw metodą nanoindentacji
T-L-3Badanie powierzchni metodą mikroskopii sił atomowych
Metody nauczaniaM-1Wykład informacyjny
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie poszczególnych ćwiczeń laboratoryjnych
S-1Ocena podsumowująca: Zaliczenie tematyki wykładów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi dobrać metod badawczych do opisania struktury materiałów konstrukcyjnych
3,0Student wykazuje ogólną orientację w tematyce metod badawczych
3,5Student potrafi dobrać metodę badawczą do opisania wybranych cech struktury
4,0Student potrafi dobrać metody badania struktury materiałów konstrukcyjnych
4,5Student potrafi wybrać i uzasadnić wybór metod badawczych do opisu struktury
5,0Student potrafi wybrać, uzasadnić wybór, proponować inne metody badania struktury materiałów konstrukcyjnych