Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)

Sylabus przedmiotu AGITATION AND AGITATED VESSELS:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot AGITATION AND AGITATED VESSELS
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Inżynierii Chemicznej i Procesowej
Nauczyciel odpowiedzialny Joanna Karcz <Joanna.Karcz@zut.edu.pl>
Inni nauczyciele Magdalena Cudak <Magdalena.Cudak@zut.edu.pl>, Joanna Karcz <Joanna.Karcz@zut.edu.pl>, Anna Kiełbus-Rąpała <Anna.Kielbus-Rapala@zut.edu.pl>, Marta Major-Godlewska <Marta.Major@zut.edu.pl>, Jolanta Szoplik <Jolanta.Szoplik@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 15 1,00,25zaliczenie
projektyP1 15 1,00,25zaliczenie
wykładyW1 15 2,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Chemical engineering fundamentals

Cele przedmiotu

KODCel modułu/przedmiotu
C-1The course aims to give a general introduction to the theory and practice of agitation and agitated vessels

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Power consumption3
T-L-2Producing of gas-liquid system in an agitated vessel3
T-L-3Mixing time in an agitated vessel3
T-L-4Mass transfer in gas-liquid system in an agitated vessel3
T-L-5Mass transfer in mechanically agitated solid-liquid system3
15
projekty
T-P-1Project of the agitated vessel used to chosen mixing operation (mixing operation: homogenization or heat transfer or mass transfer in a liquid or multiphase systems); engineering calculation of the agitated vessel geometry; engineering calculations of the homogenization or heat and mass transfer processes15
15
wykłady
T-W-1Agitation of fluids as important unit operation (homogenization of fluids; intensification of heat transfer process; intensification of mass transfer process; mixing with chemical reaction)1
T-W-2Mixing equipment (vessels; impellers; baffles; geometry of the agitated vessel; standard geometrical parameters of the agitated vessel; types of the impellers; location of the impeller shaft in the vessel (central, eccentric, side-entering); types of the baffles (planar of full length, short baffles, tubular baffles); types of the heating surfaces areas (jackets, helical coils, tubular vertical coils); static mixers2
T-W-3Rules used for the project of the agitated vessels step by step (vessel shape, vessel bottom, heating/cooling surfaces, insulation, impellers, baffles, legs, platforms, seals, shaft bearing, lids, drives, metering ports, sensors and probes, gas supply (gas spargers)1
T-W-4Power consumption (power characteristics Ne = f(Re) for laminar, transitional and turbulent regime of the fluid flow; definition of power number Ne; definition of Reynolds number Re for mixing process; an effect of the baffles on the power characteristics; values of the Ne number for different impellers and turbulent range of the fluid flow)2
T-W-5Liquid homogenization; mixing time (definition; mixing time measurement; experimental techniques; comparing of mixing time at equal power consumption)2
T-W-6Heat transfer in agitated vessels (methods for measuring of mean and local heat transfer coefficients (thermal and electrochemical methods); Nusselt equation (definition of Nusselt number Nu, Prandtl number Pr, coefficient C); an effect of the agitated vessel geometry and impeller type on the heat transfer coefficient; efficiency of heat transfer process (modified Re number, coefficient K); idea of mathematical modeling of local heat transfer coefficient; idea of numerical modeling of heat transfer process2
T-W-7Mass transfer in agitated vessels (methods of mass transfer coefficient measurements; correlations for mass transfer coefficient)1
T-W-8Mechanically agitated gas – liquid, solid – liquid, liquid – liquid and gas – solid – liquid systems (dispersions; suspensions; emulsions); maps of the gas – liquid dispersions; suspension of floating particles; minimum (critical) agitator speeds; an effect of the impeller type, baffles type and geometrical parameters of the agitated vessel on the producing of the heterogeneous systems; gas hold-up; superficial gas velocity, interfacial area; Sauter mean diameter2
T-W-9Mixing with chemical reaction1
T-W-10Mixing of particulate solids1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Obligatory attendance the laboratory works15
A-L-2Literature study on the topics of laboratory exercises10
A-L-3Repetition of the problems analyzed in the laboratory5
30
projekty
A-P-1Obligatory attendance a course15
A-P-2Literature study and general analysis of the problem solved in the project5
A-P-3Obligatory participation in the consultations with the teacher5
A-P-4Performance of project calculations and an analysis of the obtained results5
30
wykłady
A-W-1Obligatory attendance the lectures15
A-W-2Literature study on the topics discussed within the frame of the lectures15
A-W-3Remembering, understending and analyzing of the lectures content15
A-W-4Repetition of the lectures content to the exam15
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1lecture illustrated by Power Point presentation
M-2laboratory exercises
M-3projects method

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: lectures and laboratory - written test
S-2Ocena podsumowująca: completion of the project based on the correctly performed computations

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_??_W01
to provide a detailed theoretical knowledge within the framework of the agitation processes
C-1T-W-5, T-W-1, T-W-4, T-W-3, T-W-2, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_??_U01
to provide practical kowledge within the framework of the agitation and agitated vessels
C-1T-W-3, T-L-5, T-L-1, T-L-2, T-L-4, T-L-3, T-P-1M-2, M-3S-1, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_??_K01
student understands the needs of continuous training and development in the field of the agitations problems
C-1T-W-1, T-W-3, T-P-1M-1, M-2, M-3S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_??_W01
to provide a detailed theoretical knowledge within the framework of the agitation processes
2,0
3,0student has ability to explain on the basic level theoretical problems on agitation processes which are included to course contents
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_??_U01
to provide practical kowledge within the framework of the agitation and agitated vessels
2,0
3,0student has ability to calculate and solve on the basic level different practical problems on agitation and agitated vessels
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_??_K01
student understands the needs of continuous training and development in the field of the agitations problems
2,0
3,0the student understands on the basic level the needs of the continuous training and development in the field of the agitation and agitated vessels
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Harnby N., Edwards M.F., Nienow A.W., Mixing in the Process Industries, Butterworth-Heinemann, Oxford, 1997
  2. Mixing Equipment (Impeller Type), AIChE Equipment Testing Procedure, 3rd Edition, New York, 2001, ISBN 0-8169-0836-2
  3. Nagata S., Mixing. Principles and Applications, Halsted Press, New York, 1975
  4. Paul E.L., Atiemo-Obeng V.A, Kresta S.M; (Ed.), Handbook of Industrial Mixing, John Wiley & Sons, Inc., New York, 2004
  5. Tatterson G.B., Fluid Mixing and Gas Dispersion in Agitated Tanks, McGraw-Hill, Inc., New York, 1991

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Power consumption3
T-L-2Producing of gas-liquid system in an agitated vessel3
T-L-3Mixing time in an agitated vessel3
T-L-4Mass transfer in gas-liquid system in an agitated vessel3
T-L-5Mass transfer in mechanically agitated solid-liquid system3
15

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Project of the agitated vessel used to chosen mixing operation (mixing operation: homogenization or heat transfer or mass transfer in a liquid or multiphase systems); engineering calculation of the agitated vessel geometry; engineering calculations of the homogenization or heat and mass transfer processes15
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Agitation of fluids as important unit operation (homogenization of fluids; intensification of heat transfer process; intensification of mass transfer process; mixing with chemical reaction)1
T-W-2Mixing equipment (vessels; impellers; baffles; geometry of the agitated vessel; standard geometrical parameters of the agitated vessel; types of the impellers; location of the impeller shaft in the vessel (central, eccentric, side-entering); types of the baffles (planar of full length, short baffles, tubular baffles); types of the heating surfaces areas (jackets, helical coils, tubular vertical coils); static mixers2
T-W-3Rules used for the project of the agitated vessels step by step (vessel shape, vessel bottom, heating/cooling surfaces, insulation, impellers, baffles, legs, platforms, seals, shaft bearing, lids, drives, metering ports, sensors and probes, gas supply (gas spargers)1
T-W-4Power consumption (power characteristics Ne = f(Re) for laminar, transitional and turbulent regime of the fluid flow; definition of power number Ne; definition of Reynolds number Re for mixing process; an effect of the baffles on the power characteristics; values of the Ne number for different impellers and turbulent range of the fluid flow)2
T-W-5Liquid homogenization; mixing time (definition; mixing time measurement; experimental techniques; comparing of mixing time at equal power consumption)2
T-W-6Heat transfer in agitated vessels (methods for measuring of mean and local heat transfer coefficients (thermal and electrochemical methods); Nusselt equation (definition of Nusselt number Nu, Prandtl number Pr, coefficient C); an effect of the agitated vessel geometry and impeller type on the heat transfer coefficient; efficiency of heat transfer process (modified Re number, coefficient K); idea of mathematical modeling of local heat transfer coefficient; idea of numerical modeling of heat transfer process2
T-W-7Mass transfer in agitated vessels (methods of mass transfer coefficient measurements; correlations for mass transfer coefficient)1
T-W-8Mechanically agitated gas – liquid, solid – liquid, liquid – liquid and gas – solid – liquid systems (dispersions; suspensions; emulsions); maps of the gas – liquid dispersions; suspension of floating particles; minimum (critical) agitator speeds; an effect of the impeller type, baffles type and geometrical parameters of the agitated vessel on the producing of the heterogeneous systems; gas hold-up; superficial gas velocity, interfacial area; Sauter mean diameter2
T-W-9Mixing with chemical reaction1
T-W-10Mixing of particulate solids1
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Obligatory attendance the laboratory works15
A-L-2Literature study on the topics of laboratory exercises10
A-L-3Repetition of the problems analyzed in the laboratory5
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Obligatory attendance a course15
A-P-2Literature study and general analysis of the problem solved in the project5
A-P-3Obligatory participation in the consultations with the teacher5
A-P-4Performance of project calculations and an analysis of the obtained results5
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Obligatory attendance the lectures15
A-W-2Literature study on the topics discussed within the frame of the lectures15
A-W-3Remembering, understending and analyzing of the lectures content15
A-W-4Repetition of the lectures content to the exam15
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_??_W01to provide a detailed theoretical knowledge within the framework of the agitation processes
Cel przedmiotuC-1The course aims to give a general introduction to the theory and practice of agitation and agitated vessels
Treści programoweT-W-5Liquid homogenization; mixing time (definition; mixing time measurement; experimental techniques; comparing of mixing time at equal power consumption)
T-W-1Agitation of fluids as important unit operation (homogenization of fluids; intensification of heat transfer process; intensification of mass transfer process; mixing with chemical reaction)
T-W-4Power consumption (power characteristics Ne = f(Re) for laminar, transitional and turbulent regime of the fluid flow; definition of power number Ne; definition of Reynolds number Re for mixing process; an effect of the baffles on the power characteristics; values of the Ne number for different impellers and turbulent range of the fluid flow)
T-W-3Rules used for the project of the agitated vessels step by step (vessel shape, vessel bottom, heating/cooling surfaces, insulation, impellers, baffles, legs, platforms, seals, shaft bearing, lids, drives, metering ports, sensors and probes, gas supply (gas spargers)
T-W-2Mixing equipment (vessels; impellers; baffles; geometry of the agitated vessel; standard geometrical parameters of the agitated vessel; types of the impellers; location of the impeller shaft in the vessel (central, eccentric, side-entering); types of the baffles (planar of full length, short baffles, tubular baffles); types of the heating surfaces areas (jackets, helical coils, tubular vertical coils); static mixers
T-W-6Heat transfer in agitated vessels (methods for measuring of mean and local heat transfer coefficients (thermal and electrochemical methods); Nusselt equation (definition of Nusselt number Nu, Prandtl number Pr, coefficient C); an effect of the agitated vessel geometry and impeller type on the heat transfer coefficient; efficiency of heat transfer process (modified Re number, coefficient K); idea of mathematical modeling of local heat transfer coefficient; idea of numerical modeling of heat transfer process
T-W-7Mass transfer in agitated vessels (methods of mass transfer coefficient measurements; correlations for mass transfer coefficient)
T-W-8Mechanically agitated gas – liquid, solid – liquid, liquid – liquid and gas – solid – liquid systems (dispersions; suspensions; emulsions); maps of the gas – liquid dispersions; suspension of floating particles; minimum (critical) agitator speeds; an effect of the impeller type, baffles type and geometrical parameters of the agitated vessel on the producing of the heterogeneous systems; gas hold-up; superficial gas velocity, interfacial area; Sauter mean diameter
T-W-9Mixing with chemical reaction
T-W-10Mixing of particulate solids
Metody nauczaniaM-1lecture illustrated by Power Point presentation
Sposób ocenyS-1Ocena podsumowująca: lectures and laboratory - written test
Kryteria ocenyOcenaKryterium oceny
2,0
3,0student has ability to explain on the basic level theoretical problems on agitation processes which are included to course contents
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_??_U01to provide practical kowledge within the framework of the agitation and agitated vessels
Cel przedmiotuC-1The course aims to give a general introduction to the theory and practice of agitation and agitated vessels
Treści programoweT-W-3Rules used for the project of the agitated vessels step by step (vessel shape, vessel bottom, heating/cooling surfaces, insulation, impellers, baffles, legs, platforms, seals, shaft bearing, lids, drives, metering ports, sensors and probes, gas supply (gas spargers)
T-L-5Mass transfer in mechanically agitated solid-liquid system
T-L-1Power consumption
T-L-2Producing of gas-liquid system in an agitated vessel
T-L-4Mass transfer in gas-liquid system in an agitated vessel
T-L-3Mixing time in an agitated vessel
T-P-1Project of the agitated vessel used to chosen mixing operation (mixing operation: homogenization or heat transfer or mass transfer in a liquid or multiphase systems); engineering calculation of the agitated vessel geometry; engineering calculations of the homogenization or heat and mass transfer processes
Metody nauczaniaM-2laboratory exercises
M-3projects method
Sposób ocenyS-1Ocena podsumowująca: lectures and laboratory - written test
S-2Ocena podsumowująca: completion of the project based on the correctly performed computations
Kryteria ocenyOcenaKryterium oceny
2,0
3,0student has ability to calculate and solve on the basic level different practical problems on agitation and agitated vessels
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_??_K01student understands the needs of continuous training and development in the field of the agitations problems
Cel przedmiotuC-1The course aims to give a general introduction to the theory and practice of agitation and agitated vessels
Treści programoweT-W-1Agitation of fluids as important unit operation (homogenization of fluids; intensification of heat transfer process; intensification of mass transfer process; mixing with chemical reaction)
T-W-3Rules used for the project of the agitated vessels step by step (vessel shape, vessel bottom, heating/cooling surfaces, insulation, impellers, baffles, legs, platforms, seals, shaft bearing, lids, drives, metering ports, sensors and probes, gas supply (gas spargers)
T-P-1Project of the agitated vessel used to chosen mixing operation (mixing operation: homogenization or heat transfer or mass transfer in a liquid or multiphase systems); engineering calculation of the agitated vessel geometry; engineering calculations of the homogenization or heat and mass transfer processes
Metody nauczaniaM-1lecture illustrated by Power Point presentation
M-2laboratory exercises
M-3projects method
Sposób ocenyS-1Ocena podsumowująca: lectures and laboratory - written test
S-2Ocena podsumowująca: completion of the project based on the correctly performed computations
Kryteria ocenyOcenaKryterium oceny
2,0
3,0the student understands on the basic level the needs of the continuous training and development in the field of the agitation and agitated vessels
3,5
4,0
4,5
5,0