Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)
Sylabus przedmiotu Knowledge Extraction from Data with Rough Set Method and its Applications:
Informacje podstawowe
Kierunek studiów | Wymiana międzynarodowa | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | |||
Obszary studiów | — | ||
Profil | |||
Moduł | — | ||
Przedmiot | Knowledge Extraction from Data with Rough Set Method and its Applications | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej | ||
Nauczyciel odpowiedzialny | Marcin Pluciński <Marcin.Plucinski@zut.edu.pl> | ||
Inni nauczyciele | Marcin Korzeń <Marcin.Korzen@zut.edu.pl>, Wojciech Sałabun <wsalabun@wi.zut.edu.pl> | ||
ECTS (planowane) | 3,0 | ECTS (formy) | 3,0 |
Forma zaliczenia | zaliczenie | Język | angielski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Knowledge of basics of high mathematics |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Acquirement of competence and practice of knowledge extraction in form of rule basis from information tables about a system of interest. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Exercises in various methods of attribute discretization. | 2 |
T-L-2 | Identification of elementary conditional and decisional sets (concepts) from the informational table of a system. Visualization of conditional and decisional sets. Decomposition of decisional sets in conditional ones. | 2 |
T-L-3 | Determining of absolute and relative attribute reducts, minimal sets of attributes and attribute cores. | 2 |
T-L-4 | Determining rough models of systems in form of rules' basis. Rules' reduction and verification. | 3 |
T-L-5 | Calculating quality measures of rough set models, determining of possible risk due to attribute reduction. | 2 |
T-L-6 | Determining soft rough set models of systems, soft attribute reduction, generating and processing probabilistic rules. | 2 |
T-L-7 | Constructing the rough set model for a given system as finishing of laboratory exercices. | 2 |
15 | ||
wykłady | ||
T-W-1 | Example of a real problem solved with use of rough sets, | 1 |
T-W-2 | Discretization of variables in problems, its meaning and usefulness. Basic ways of discretization. | 1 |
T-W-3 | Basic notions of rough sets. | 1 |
T-W-4 | Absolute and relative reduction of redundant system attributes. | 2 |
T-W-5 | Quality measures of rough set models. | 1 |
T-W-6 | Generating of certain and uncertain information rules about the system, their reduction and processing. | 2 |
T-W-7 | Rules' risk occuring due to reduction of conditional attributes. | 1 |
T-W-8 | "Soft" version of rough sets enabling generating both certain and uncertain (probabilistic) rules and "soft" attribute reduction. | 4 |
T-W-9 | Example of rough set application showing successive realization steps necessary to correct extraction of rule basis with use of rough sets. | 2 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Participation in laboratory excercises | 15 |
A-L-2 | Consultations referring to laboratory excerces | 10 |
A-L-3 | Elaborating of the project of an own rough set model of a real system for testing student competence in knowledge extraction from information tables of systems | 35 |
60 | ||
wykłady | ||
A-W-1 | Participating in consultaions | 3 |
A-W-2 | Studying of lecture texts and of the recommended literature | 12 |
A-W-3 | Participation in lectures | 15 |
30 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Information lecture with presentation |
M-2 | Laboratory excercises in individual solving of sub-problems given by an academician and realization of the end-project summarizing lectures and laboratory |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Lectures: summarizing evaluation of the student on the basis of the end-project of knowledge extraction with rough sets individually realized by the student with taking into account student activity during lectures. |
S-2 | Ocena formująca: Laboratory: forming evaluation of the student based on the student activity duaring laboratory training |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WI_1-_??_W01 The student has knowledge about rough sets, models created on the base of them, and main applications of rough sets. | — | — | C-1 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9 | M-1 | S-1 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WI_1-_??_U01 The student has the ability to create rough set models in form of rules. | — | — | C-1 | T-L-1, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7 | M-2 | S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
WM-WI_1-_??_W01 The student has knowledge about rough sets, models created on the base of them, and main applications of rough sets. | 2,0 | |
3,0 | The student has the basic knowledge about rough sets and rough set models. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
WM-WI_1-_??_U01 The student has the ability to create rough set models in form of rules. | 2,0 | |
3,0 | The student has the basic practical ability in creating of rough set models. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Lech Polkowski, Rough sets. Mathematical foundations., Physica-Verlag, A Springer-Verlag Company, Heilderberg, New York, 2002, 1
- W. Pedrycz, A. Skowron, V. Kreinowich (editors), Handbook of granular computing, Wiley, Chichester, England, 2008, 1
Literatura dodatkowa
- S.K. Pal, L. Polkowski, A. Skowron (editors), Rough-Neural Computing. Techniques for Computing with Words, Springer, Berlin Heidelberg, New York, 2004, 1