Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)

Sylabus przedmiotu Knowledge Extraction from Data with Rough Set Method and its Applications:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot Knowledge Extraction from Data with Rough Set Method and its Applications
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Marcin Pluciński <Marcin.Plucinski@zut.edu.pl>
Inni nauczyciele Marcin Korzeń <Marcin.Korzen@zut.edu.pl>, Wojciech Sałabun <wsalabun@wi.zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 15 2,00,70zaliczenie
wykładyW1 15 1,00,30zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Knowledge of basics of high mathematics

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Acquirement of competence and practice of knowledge extraction in form of rule basis from information tables about a system of interest.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Exercises in various methods of attribute discretization.2
T-L-2Identification of elementary conditional and decisional sets (concepts) from the informational table of a system. Visualization of conditional and decisional sets. Decomposition of decisional sets in conditional ones.2
T-L-3Determining of absolute and relative attribute reducts, minimal sets of attributes and attribute cores.2
T-L-4Determining rough models of systems in form of rules' basis. Rules' reduction and verification.3
T-L-5Calculating quality measures of rough set models, determining of possible risk due to attribute reduction.2
T-L-6Determining soft rough set models of systems, soft attribute reduction, generating and processing probabilistic rules.2
T-L-7Constructing the rough set model for a given system as finishing of laboratory exercices.2
15
wykłady
T-W-1Example of a real problem solved with use of rough sets,1
T-W-2Discretization of variables in problems, its meaning and usefulness. Basic ways of discretization.1
T-W-3Basic notions of rough sets.1
T-W-4Absolute and relative reduction of redundant system attributes.2
T-W-5Quality measures of rough set models.1
T-W-6Generating of certain and uncertain information rules about the system, their reduction and processing.2
T-W-7Rules' risk occuring due to reduction of conditional attributes.1
T-W-8"Soft" version of rough sets enabling generating both certain and uncertain (probabilistic) rules and "soft" attribute reduction.4
T-W-9Example of rough set application showing successive realization steps necessary to correct extraction of rule basis with use of rough sets.2
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Participation in laboratory excercises15
A-L-2Consultations referring to laboratory excerces10
A-L-3Elaborating of the project of an own rough set model of a real system for testing student competence in knowledge extraction from information tables of systems35
60
wykłady
A-W-1Participating in consultaions3
A-W-2Studying of lecture texts and of the recommended literature12
A-W-3Participation in lectures15
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Information lecture with presentation
M-2Laboratory excercises in individual solving of sub-problems given by an academician and realization of the end-project summarizing lectures and laboratory

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Lectures: summarizing evaluation of the student on the basis of the end-project of knowledge extraction with rough sets individually realized by the student with taking into account student activity during lectures.
S-2Ocena formująca: Laboratory: forming evaluation of the student based on the student activity duaring laboratory training

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WI_1-_??_W01
The student has knowledge about rough sets, models created on the base of them, and main applications of rough sets.
C-1T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WI_1-_??_U01
The student has the ability to create rough set models in form of rules.
C-1T-L-1, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7M-2S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WI_1-_??_W01
The student has knowledge about rough sets, models created on the base of them, and main applications of rough sets.
2,0
3,0The student has the basic knowledge about rough sets and rough set models.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WI_1-_??_U01
The student has the ability to create rough set models in form of rules.
2,0
3,0The student has the basic practical ability in creating of rough set models.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Lech Polkowski, Rough sets. Mathematical foundations., Physica-Verlag, A Springer-Verlag Company, Heilderberg, New York, 2002, 1
  2. W. Pedrycz, A. Skowron, V. Kreinowich (editors), Handbook of granular computing, Wiley, Chichester, England, 2008, 1

Literatura dodatkowa

  1. S.K. Pal, L. Polkowski, A. Skowron (editors), Rough-Neural Computing. Techniques for Computing with Words, Springer, Berlin Heidelberg, New York, 2004, 1

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Exercises in various methods of attribute discretization.2
T-L-2Identification of elementary conditional and decisional sets (concepts) from the informational table of a system. Visualization of conditional and decisional sets. Decomposition of decisional sets in conditional ones.2
T-L-3Determining of absolute and relative attribute reducts, minimal sets of attributes and attribute cores.2
T-L-4Determining rough models of systems in form of rules' basis. Rules' reduction and verification.3
T-L-5Calculating quality measures of rough set models, determining of possible risk due to attribute reduction.2
T-L-6Determining soft rough set models of systems, soft attribute reduction, generating and processing probabilistic rules.2
T-L-7Constructing the rough set model for a given system as finishing of laboratory exercices.2
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Example of a real problem solved with use of rough sets,1
T-W-2Discretization of variables in problems, its meaning and usefulness. Basic ways of discretization.1
T-W-3Basic notions of rough sets.1
T-W-4Absolute and relative reduction of redundant system attributes.2
T-W-5Quality measures of rough set models.1
T-W-6Generating of certain and uncertain information rules about the system, their reduction and processing.2
T-W-7Rules' risk occuring due to reduction of conditional attributes.1
T-W-8"Soft" version of rough sets enabling generating both certain and uncertain (probabilistic) rules and "soft" attribute reduction.4
T-W-9Example of rough set application showing successive realization steps necessary to correct extraction of rule basis with use of rough sets.2
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Participation in laboratory excercises15
A-L-2Consultations referring to laboratory excerces10
A-L-3Elaborating of the project of an own rough set model of a real system for testing student competence in knowledge extraction from information tables of systems35
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participating in consultaions3
A-W-2Studying of lecture texts and of the recommended literature12
A-W-3Participation in lectures15
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WI_1-_??_W01The student has knowledge about rough sets, models created on the base of them, and main applications of rough sets.
Cel przedmiotuC-1Acquirement of competence and practice of knowledge extraction in form of rule basis from information tables about a system of interest.
Treści programoweT-W-1Example of a real problem solved with use of rough sets,
T-W-2Discretization of variables in problems, its meaning and usefulness. Basic ways of discretization.
T-W-3Basic notions of rough sets.
T-W-4Absolute and relative reduction of redundant system attributes.
T-W-5Quality measures of rough set models.
T-W-6Generating of certain and uncertain information rules about the system, their reduction and processing.
T-W-7Rules' risk occuring due to reduction of conditional attributes.
T-W-8"Soft" version of rough sets enabling generating both certain and uncertain (probabilistic) rules and "soft" attribute reduction.
T-W-9Example of rough set application showing successive realization steps necessary to correct extraction of rule basis with use of rough sets.
Metody nauczaniaM-1Information lecture with presentation
Sposób ocenyS-1Ocena podsumowująca: Lectures: summarizing evaluation of the student on the basis of the end-project of knowledge extraction with rough sets individually realized by the student with taking into account student activity during lectures.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student has the basic knowledge about rough sets and rough set models.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WI_1-_??_U01The student has the ability to create rough set models in form of rules.
Cel przedmiotuC-1Acquirement of competence and practice of knowledge extraction in form of rule basis from information tables about a system of interest.
Treści programoweT-L-1Exercises in various methods of attribute discretization.
T-L-2Identification of elementary conditional and decisional sets (concepts) from the informational table of a system. Visualization of conditional and decisional sets. Decomposition of decisional sets in conditional ones.
T-L-3Determining of absolute and relative attribute reducts, minimal sets of attributes and attribute cores.
T-L-4Determining rough models of systems in form of rules' basis. Rules' reduction and verification.
T-L-5Calculating quality measures of rough set models, determining of possible risk due to attribute reduction.
T-L-6Determining soft rough set models of systems, soft attribute reduction, generating and processing probabilistic rules.
T-L-7Constructing the rough set model for a given system as finishing of laboratory exercices.
Metody nauczaniaM-2Laboratory excercises in individual solving of sub-problems given by an academician and realization of the end-project summarizing lectures and laboratory
Sposób ocenyS-2Ocena formująca: Laboratory: forming evaluation of the student based on the student activity duaring laboratory training
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student has the basic practical ability in creating of rough set models.
3,5
4,0
4,5
5,0