Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S2)

Sylabus przedmiotu ECO – ARCHITECTURAL DESIGN:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot ECO – ARCHITECTURAL DESIGN
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Mieszkalnictwa i Podstaw Techniczno-Ekologicznych Architektury
Nauczyciel odpowiedzialny Marek Wołoszyn <Marek.Woloszyn@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
projektyP1 45 3,00,40zaliczenie
wykładyW1 15 1,00,60zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Diploma of 1st degree studies in the field of architecture and urban planning

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Gaining knowledge about life cycles and design mechanisms and processes, mastering a skill of variant modeling of processes and simulation in the created architectural space.
C-2Teaching the formation of space for public facilities, taking into account the principles of sustainable design, acquiring the ability to plan the concept of energy facilities and the basis of ecological building certification.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1The aim of the subject is to create an architectural space with consideration of the important ecological factors, in particular the energy conservation, and to introduce the sustainable design, where environmental sensitivity is the key paradigm for design strategies. Choice of the subject of small scale and range of description, an analysis of potential possibilities of design solution, an analysis of critical points, research on function variability and mobility, material solutions, an analysis of building structures in the context of the life cycle and ecological profile for the accepted solutions.1
T-P-2Exercises Students at a specific location are to develop a public utility building project based on the principles of sustainable design, including passive, energy-saving systems, specifying data for ecological (energy) certification of the planned facility. For a juxtaposition with the designed building, calculate the energy demand of a standard building with identical cubic capacity.44
45
wykłady
T-W-1The paradigm of sustainable development and its consequences for architecture.1
T-W-2Sustainable development, sustainable development, concepts and definitions of the subject.1
T-W-3Examples of solutions for architectural objects that meet the principles of sustainable development.1
T-W-4Location and environment, local interest, local community.1
T-W-5Life cycle of building materials, selection of materials.1
T-W-6"Healthy" buildings and their life cycle.1
T-W-7Saving raw materials and electricity (water, wood, electricity, etc.).1
T-W-8Modern glass and the possibility of using in energy-saving construction.1
T-W-9Renewable energy and its impact on architecture and urban planning.1
T-W-10Continued Renewable energy and its impact on architecture and urban planning.1
T-W-11Passive buildings.1
T-W-12Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.1
T-W-13Continued Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.1
T-W-14Checking the message.1
T-W-15Exam.1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1Participation in classes45
A-P-2Own work at home.45
90
wykłady
A-W-1Presence on the lectures.14
A-W-2Exam.1
A-W-3Own work at home.15
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Classes consist of study and project work during classes, at the beginning of which a project task is formulated, which should be solved by the method of subsequent approximations. Individual corrections, homeworks, closures and progress reviews of project work are carried out.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Completing of term project (A3 format, min.4 large-scale illustrations and digital version on CD, saved in PDF extension) and a project book, containing drafts regarding project, inspirations and resources, presenting development of the work during the project exercises.
S-2Ocena podsumowująca: Completion of the exercises is based on: grades from control closures (35%) and evaluation of the project ending the given semester (65%). The final project prepared is a work presenting both the correctness of the solution to the design problem as well as the technical and workshop skills related to the issues of energy efficiency and ecological certification.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WBiA_2-_BS2-V/1_W01
The student got to know the technical and technological conditions of designing and planning.
C-2T-W-11, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10, T-W-12, T-W-13, T-W-14, T-W-15, T-P-1, T-P-2M-1S-1, S-2
WM-WBiA_2-_BS2-V/1_W02
The student got to know modern materials and technologies, the latest global realizations and trends in contemporary architecture and urban planning.
C-2T-W-11, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10, T-W-12, T-W-13, T-W-14, T-W-15, T-P-1, T-P-2M-1S-2
WM-WBiA_2-_BS2-V/1_W03
The student got acquainted with the idea of sustainable development and implements it in the field of architecture and urban planning.
C-2T-W-11, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10, T-W-12, T-W-13, T-W-14, T-W-15, T-P-1, T-P-2M-1S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WBiA_2-_BS2-V/1_U01
Understanding of the basic principles of sustainable architecture, regenerative design as well as understanding holistic approach to integrated, responsible design processes. Ability to assess and select appropriate building service systems, renewable energy concepts, efficient structural systems and application of building components, materials and assemblies. Understanding of environmental responsibility of architects and urban planners.
C-2T-W-11, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10, T-W-12, T-W-13, T-W-14, T-W-15, T-P-1, T-P-2M-1S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WBiA_2-_BS2-V/1_K01
Student understands the non-technical aspects of design and planning activities, is able to shape the investment and its impact on the broadly understood environment and social relations.
C-2T-W-11, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10, T-W-12, T-W-13, T-W-14, T-W-15, T-P-1, T-P-2M-1S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WBiA_2-_BS2-V/1_W01
The student got to know the technical and technological conditions of designing and planning.
2,0
3,0The student knows the technical and technological conditions of design and planning.
3,5
4,0
4,5
5,0
WM-WBiA_2-_BS2-V/1_W02
The student got to know modern materials and technologies, the latest global realizations and trends in contemporary architecture and urban planning.
2,0
3,0The student knows current modern materials and trends in contemporary architecture and urban planning.
3,5
4,0
4,5
5,0
WM-WBiA_2-_BS2-V/1_W03
The student got acquainted with the idea of sustainable development and implements it in the field of architecture and urban planning.
2,0
3,0The student knows the idea of sustainable development.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WBiA_2-_BS2-V/1_U01
Understanding of the basic principles of sustainable architecture, regenerative design as well as understanding holistic approach to integrated, responsible design processes. Ability to assess and select appropriate building service systems, renewable energy concepts, efficient structural systems and application of building components, materials and assemblies. Understanding of environmental responsibility of architects and urban planners.
2,0
3,0The student can accurately select, to the intended architectural effect, construction and material solutions.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WBiA_2-_BS2-V/1_K01
Student understands the non-technical aspects of design and planning activities, is able to shape the investment and its impact on the broadly understood environment and social relations.
2,0
3,0The student understands the non-technical aspects of design and planning.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. T. Herzog, „Solar Energy in Architecture and Urban Planning”, Prestel, Munich, 1996
  2. Anik, Bonstra, Mak, Handbook of sustainable building: An environmental preference method of selecction material for use in construction and refurbishment, James & James, London, 1996
  3. T. Herzog, „Solar Energy in Architecture and Urban Planning”, Prestel, Munich, 1996
  4. Daniels K., Low - Tech, Light - Tech, High - Tech. Building in the information Age, Bildhauser Publishers Basel, Basilea, 1999
  5. Daniels K., Low - Tech, Light - Tech, High - Tech. Building in the information Age, Bildhauser Publishers Basel, Basilea, 1999
  6. Edwards B., Sustainable Architecture - European Directives and Building Design, Architectural Press, Oxford, 1999
  7. Edwards B., Sustainable Architecture - European Directives and Building Design, Architectural Press, Oxford, 1999
  8. Wołoszyn M., Implication oin architectural design of dowtown block revitalization, Instytut Techniki Budowlanej, Warszawa, 2004
  9. Wołoszyn M., Implication oin architectural design of dowtown block revitalization, Instytut Techniki Budowlanej, Warszawa, 2004

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1The aim of the subject is to create an architectural space with consideration of the important ecological factors, in particular the energy conservation, and to introduce the sustainable design, where environmental sensitivity is the key paradigm for design strategies. Choice of the subject of small scale and range of description, an analysis of potential possibilities of design solution, an analysis of critical points, research on function variability and mobility, material solutions, an analysis of building structures in the context of the life cycle and ecological profile for the accepted solutions.1
T-P-2Exercises Students at a specific location are to develop a public utility building project based on the principles of sustainable design, including passive, energy-saving systems, specifying data for ecological (energy) certification of the planned facility. For a juxtaposition with the designed building, calculate the energy demand of a standard building with identical cubic capacity.44
45

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1The paradigm of sustainable development and its consequences for architecture.1
T-W-2Sustainable development, sustainable development, concepts and definitions of the subject.1
T-W-3Examples of solutions for architectural objects that meet the principles of sustainable development.1
T-W-4Location and environment, local interest, local community.1
T-W-5Life cycle of building materials, selection of materials.1
T-W-6"Healthy" buildings and their life cycle.1
T-W-7Saving raw materials and electricity (water, wood, electricity, etc.).1
T-W-8Modern glass and the possibility of using in energy-saving construction.1
T-W-9Renewable energy and its impact on architecture and urban planning.1
T-W-10Continued Renewable energy and its impact on architecture and urban planning.1
T-W-11Passive buildings.1
T-W-12Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.1
T-W-13Continued Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.1
T-W-14Checking the message.1
T-W-15Exam.1
15

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Participation in classes45
A-P-2Own work at home.45
90
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Presence on the lectures.14
A-W-2Exam.1
A-W-3Own work at home.15
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WBiA_2-_BS2-V/1_W01The student got to know the technical and technological conditions of designing and planning.
Cel przedmiotuC-2Teaching the formation of space for public facilities, taking into account the principles of sustainable design, acquiring the ability to plan the concept of energy facilities and the basis of ecological building certification.
Treści programoweT-W-11Passive buildings.
T-W-1The paradigm of sustainable development and its consequences for architecture.
T-W-2Sustainable development, sustainable development, concepts and definitions of the subject.
T-W-3Examples of solutions for architectural objects that meet the principles of sustainable development.
T-W-4Location and environment, local interest, local community.
T-W-5Life cycle of building materials, selection of materials.
T-W-6"Healthy" buildings and their life cycle.
T-W-7Saving raw materials and electricity (water, wood, electricity, etc.).
T-W-8Modern glass and the possibility of using in energy-saving construction.
T-W-9Renewable energy and its impact on architecture and urban planning.
T-W-10Continued Renewable energy and its impact on architecture and urban planning.
T-W-12Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.
T-W-13Continued Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.
T-W-14Checking the message.
T-W-15Exam.
T-P-1The aim of the subject is to create an architectural space with consideration of the important ecological factors, in particular the energy conservation, and to introduce the sustainable design, where environmental sensitivity is the key paradigm for design strategies. Choice of the subject of small scale and range of description, an analysis of potential possibilities of design solution, an analysis of critical points, research on function variability and mobility, material solutions, an analysis of building structures in the context of the life cycle and ecological profile for the accepted solutions.
T-P-2Exercises Students at a specific location are to develop a public utility building project based on the principles of sustainable design, including passive, energy-saving systems, specifying data for ecological (energy) certification of the planned facility. For a juxtaposition with the designed building, calculate the energy demand of a standard building with identical cubic capacity.
Metody nauczaniaM-1Classes consist of study and project work during classes, at the beginning of which a project task is formulated, which should be solved by the method of subsequent approximations. Individual corrections, homeworks, closures and progress reviews of project work are carried out.
Sposób ocenyS-1Ocena formująca: Completing of term project (A3 format, min.4 large-scale illustrations and digital version on CD, saved in PDF extension) and a project book, containing drafts regarding project, inspirations and resources, presenting development of the work during the project exercises.
S-2Ocena podsumowująca: Completion of the exercises is based on: grades from control closures (35%) and evaluation of the project ending the given semester (65%). The final project prepared is a work presenting both the correctness of the solution to the design problem as well as the technical and workshop skills related to the issues of energy efficiency and ecological certification.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student knows the technical and technological conditions of design and planning.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WBiA_2-_BS2-V/1_W02The student got to know modern materials and technologies, the latest global realizations and trends in contemporary architecture and urban planning.
Cel przedmiotuC-2Teaching the formation of space for public facilities, taking into account the principles of sustainable design, acquiring the ability to plan the concept of energy facilities and the basis of ecological building certification.
Treści programoweT-W-11Passive buildings.
T-W-1The paradigm of sustainable development and its consequences for architecture.
T-W-2Sustainable development, sustainable development, concepts and definitions of the subject.
T-W-3Examples of solutions for architectural objects that meet the principles of sustainable development.
T-W-4Location and environment, local interest, local community.
T-W-5Life cycle of building materials, selection of materials.
T-W-6"Healthy" buildings and their life cycle.
T-W-7Saving raw materials and electricity (water, wood, electricity, etc.).
T-W-8Modern glass and the possibility of using in energy-saving construction.
T-W-9Renewable energy and its impact on architecture and urban planning.
T-W-10Continued Renewable energy and its impact on architecture and urban planning.
T-W-12Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.
T-W-13Continued Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.
T-W-14Checking the message.
T-W-15Exam.
T-P-1The aim of the subject is to create an architectural space with consideration of the important ecological factors, in particular the energy conservation, and to introduce the sustainable design, where environmental sensitivity is the key paradigm for design strategies. Choice of the subject of small scale and range of description, an analysis of potential possibilities of design solution, an analysis of critical points, research on function variability and mobility, material solutions, an analysis of building structures in the context of the life cycle and ecological profile for the accepted solutions.
T-P-2Exercises Students at a specific location are to develop a public utility building project based on the principles of sustainable design, including passive, energy-saving systems, specifying data for ecological (energy) certification of the planned facility. For a juxtaposition with the designed building, calculate the energy demand of a standard building with identical cubic capacity.
Metody nauczaniaM-1Classes consist of study and project work during classes, at the beginning of which a project task is formulated, which should be solved by the method of subsequent approximations. Individual corrections, homeworks, closures and progress reviews of project work are carried out.
Sposób ocenyS-2Ocena podsumowująca: Completion of the exercises is based on: grades from control closures (35%) and evaluation of the project ending the given semester (65%). The final project prepared is a work presenting both the correctness of the solution to the design problem as well as the technical and workshop skills related to the issues of energy efficiency and ecological certification.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student knows current modern materials and trends in contemporary architecture and urban planning.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WBiA_2-_BS2-V/1_W03The student got acquainted with the idea of sustainable development and implements it in the field of architecture and urban planning.
Cel przedmiotuC-2Teaching the formation of space for public facilities, taking into account the principles of sustainable design, acquiring the ability to plan the concept of energy facilities and the basis of ecological building certification.
Treści programoweT-W-11Passive buildings.
T-W-1The paradigm of sustainable development and its consequences for architecture.
T-W-2Sustainable development, sustainable development, concepts and definitions of the subject.
T-W-3Examples of solutions for architectural objects that meet the principles of sustainable development.
T-W-4Location and environment, local interest, local community.
T-W-5Life cycle of building materials, selection of materials.
T-W-6"Healthy" buildings and their life cycle.
T-W-7Saving raw materials and electricity (water, wood, electricity, etc.).
T-W-8Modern glass and the possibility of using in energy-saving construction.
T-W-9Renewable energy and its impact on architecture and urban planning.
T-W-10Continued Renewable energy and its impact on architecture and urban planning.
T-W-12Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.
T-W-13Continued Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.
T-W-14Checking the message.
T-W-15Exam.
T-P-1The aim of the subject is to create an architectural space with consideration of the important ecological factors, in particular the energy conservation, and to introduce the sustainable design, where environmental sensitivity is the key paradigm for design strategies. Choice of the subject of small scale and range of description, an analysis of potential possibilities of design solution, an analysis of critical points, research on function variability and mobility, material solutions, an analysis of building structures in the context of the life cycle and ecological profile for the accepted solutions.
T-P-2Exercises Students at a specific location are to develop a public utility building project based on the principles of sustainable design, including passive, energy-saving systems, specifying data for ecological (energy) certification of the planned facility. For a juxtaposition with the designed building, calculate the energy demand of a standard building with identical cubic capacity.
Metody nauczaniaM-1Classes consist of study and project work during classes, at the beginning of which a project task is formulated, which should be solved by the method of subsequent approximations. Individual corrections, homeworks, closures and progress reviews of project work are carried out.
Sposób ocenyS-2Ocena podsumowująca: Completion of the exercises is based on: grades from control closures (35%) and evaluation of the project ending the given semester (65%). The final project prepared is a work presenting both the correctness of the solution to the design problem as well as the technical and workshop skills related to the issues of energy efficiency and ecological certification.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student knows the idea of sustainable development.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WBiA_2-_BS2-V/1_U01Understanding of the basic principles of sustainable architecture, regenerative design as well as understanding holistic approach to integrated, responsible design processes. Ability to assess and select appropriate building service systems, renewable energy concepts, efficient structural systems and application of building components, materials and assemblies. Understanding of environmental responsibility of architects and urban planners.
Cel przedmiotuC-2Teaching the formation of space for public facilities, taking into account the principles of sustainable design, acquiring the ability to plan the concept of energy facilities and the basis of ecological building certification.
Treści programoweT-W-11Passive buildings.
T-W-1The paradigm of sustainable development and its consequences for architecture.
T-W-2Sustainable development, sustainable development, concepts and definitions of the subject.
T-W-3Examples of solutions for architectural objects that meet the principles of sustainable development.
T-W-4Location and environment, local interest, local community.
T-W-5Life cycle of building materials, selection of materials.
T-W-6"Healthy" buildings and their life cycle.
T-W-7Saving raw materials and electricity (water, wood, electricity, etc.).
T-W-8Modern glass and the possibility of using in energy-saving construction.
T-W-9Renewable energy and its impact on architecture and urban planning.
T-W-10Continued Renewable energy and its impact on architecture and urban planning.
T-W-12Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.
T-W-13Continued Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.
T-W-14Checking the message.
T-W-15Exam.
T-P-1The aim of the subject is to create an architectural space with consideration of the important ecological factors, in particular the energy conservation, and to introduce the sustainable design, where environmental sensitivity is the key paradigm for design strategies. Choice of the subject of small scale and range of description, an analysis of potential possibilities of design solution, an analysis of critical points, research on function variability and mobility, material solutions, an analysis of building structures in the context of the life cycle and ecological profile for the accepted solutions.
T-P-2Exercises Students at a specific location are to develop a public utility building project based on the principles of sustainable design, including passive, energy-saving systems, specifying data for ecological (energy) certification of the planned facility. For a juxtaposition with the designed building, calculate the energy demand of a standard building with identical cubic capacity.
Metody nauczaniaM-1Classes consist of study and project work during classes, at the beginning of which a project task is formulated, which should be solved by the method of subsequent approximations. Individual corrections, homeworks, closures and progress reviews of project work are carried out.
Sposób ocenyS-2Ocena podsumowująca: Completion of the exercises is based on: grades from control closures (35%) and evaluation of the project ending the given semester (65%). The final project prepared is a work presenting both the correctness of the solution to the design problem as well as the technical and workshop skills related to the issues of energy efficiency and ecological certification.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student can accurately select, to the intended architectural effect, construction and material solutions.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WBiA_2-_BS2-V/1_K01Student understands the non-technical aspects of design and planning activities, is able to shape the investment and its impact on the broadly understood environment and social relations.
Cel przedmiotuC-2Teaching the formation of space for public facilities, taking into account the principles of sustainable design, acquiring the ability to plan the concept of energy facilities and the basis of ecological building certification.
Treści programoweT-W-11Passive buildings.
T-W-1The paradigm of sustainable development and its consequences for architecture.
T-W-2Sustainable development, sustainable development, concepts and definitions of the subject.
T-W-3Examples of solutions for architectural objects that meet the principles of sustainable development.
T-W-4Location and environment, local interest, local community.
T-W-5Life cycle of building materials, selection of materials.
T-W-6"Healthy" buildings and their life cycle.
T-W-7Saving raw materials and electricity (water, wood, electricity, etc.).
T-W-8Modern glass and the possibility of using in energy-saving construction.
T-W-9Renewable energy and its impact on architecture and urban planning.
T-W-10Continued Renewable energy and its impact on architecture and urban planning.
T-W-12Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.
T-W-13Continued Existing classifications of construction on the principles of sustainable development: LEED, BREEAM, SBTool, DGNB, others.
T-W-14Checking the message.
T-W-15Exam.
T-P-1The aim of the subject is to create an architectural space with consideration of the important ecological factors, in particular the energy conservation, and to introduce the sustainable design, where environmental sensitivity is the key paradigm for design strategies. Choice of the subject of small scale and range of description, an analysis of potential possibilities of design solution, an analysis of critical points, research on function variability and mobility, material solutions, an analysis of building structures in the context of the life cycle and ecological profile for the accepted solutions.
T-P-2Exercises Students at a specific location are to develop a public utility building project based on the principles of sustainable design, including passive, energy-saving systems, specifying data for ecological (energy) certification of the planned facility. For a juxtaposition with the designed building, calculate the energy demand of a standard building with identical cubic capacity.
Metody nauczaniaM-1Classes consist of study and project work during classes, at the beginning of which a project task is formulated, which should be solved by the method of subsequent approximations. Individual corrections, homeworks, closures and progress reviews of project work are carried out.
Sposób ocenyS-2Ocena podsumowująca: Completion of the exercises is based on: grades from control closures (35%) and evaluation of the project ending the given semester (65%). The final project prepared is a work presenting both the correctness of the solution to the design problem as well as the technical and workshop skills related to the issues of energy efficiency and ecological certification.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student understands the non-technical aspects of design and planning.
3,5
4,0
4,5
5,0