Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Techniki Morskiej i Transportu - Oceanotechnika (S2)

Sylabus przedmiotu Wytrzymałość statyczna i zmęczeniowa MES:

Informacje podstawowe

Kierunek studiów Oceanotechnika
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł Przedmiot obieralny 3
Przedmiot Wytrzymałość statyczna i zmęczeniowa MES
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Mechaniki Konstrukcji
Nauczyciel odpowiedzialny Maciej Taczała <Maciej.Taczala@zut.edu.pl>
Inni nauczyciele Maciej Taczała <Maciej.Taczala@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia egzamin Język polski
Blok obieralny 5 Grupa obieralna 6

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW3 30 1,50,50egzamin
ćwiczenia audytoryjneA3 30 1,50,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowe wiadomości, kompetencje i umiejętności z matematyki
W-2Podstawowe wiadomości, kompetencje i umiejętności z mechaniki
W-3Podstawowe wiadomości, kompetencje i umiejętności z mechaniki konstrukcji

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z podstawami teoretycznymi i metodami analizy wytrzymałości statycznej i zmęczeniowej kadłuba okrętowego i obiektów offshore oraz stateczności elementów konstrukcyjnych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Przykłady i zadania zgodnie z tematyka prowadzonych wykładów.28
T-A-2Kolokwium nr 1.1
T-A-3Kolokwium nr 2.1
30
wykłady
T-W-1Warunki i obciążenia środowiskowe statków i obiektów oceanotechnicznych.1
T-W-2Elementy konstrukcyjne kadłuba statku i obiektów offshore i ich modele: wiązania ramowe, płyty usztywnione, usztywnione. Pojęcia ortotropii konstrukcyjnej i pasa współpracującego poszycia, sposoby modelowania płyt usztywnionych.3
T-W-3Wytrzymałość ogólna kadłuba – zginanie, ścinanie, skręcanie.3
T-W-4Wytrzymałość strefowa i lokalna, naprężenia pierwszego, drugiego i trzeciego rzędu, koncentracja naprężeń.3
T-W-5Stateczność elementów konstrukcyjnych: płyt i paneli usztywnionych; postacie wyboczenia, metody analizy.3
T-W-6Modelowanie elementów konstrukcyjnych kadłuba w MES, technika submodellingu.2
T-W-7Pojęcie stanu granicznego konstrukcji, projektowanie metodą stanów granicznych.2
T-W-8Pojęcie wytrzymałości zmęczeniowej, czynniki wpływające na wytrzymałość zmęczeniową.2
T-W-9Krótko- i długoterminowa prognoza naprężeń.2
T-W-10Wytrzymałość zmęczeniowa w oparciu o krzywe S-N i mechanikę pękania.3
T-W-11Rodzaje naprężeń wykorzystywnae w analizie wytrzymałości zmęczeniowej: "nominal", "hot-spot", "notch". Korekta krzywych S-N.3
T-W-12Ocena wytrzymałości zmęczeniowej wg przepisów towarzystw klasyfikacyjnych.3
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach30
A-A-2Przygotowanie się do kolokwiów8
38
wykłady
A-W-1Uczestnictwo w zajęciach30
A-W-2Przygotowanie do zaliczenia formy zajęć6
A-W-3Udział w egzaminie2
38

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
M-2Metody problemowe: wykład problemowy.
M-3Metody praktyczne: pokaz, ćwiczenia przedmiotowe.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena ciągła.
S-2Ocena podsumowująca: Ocena na podstawie wyników pracy zaliczeniowej (wykłady).
S-3Ocena podsumowująca: Ocena na podstawie wyników kolokwiów zaliczeniowych (ćwiczenia przedmiotowe).

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
O_2A_O03-1_W01
ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych
O_2A_W15C-1T-W-3, T-W-6, T-W-7, T-W-4, T-W-5, T-W-2M-3, M-2, M-1S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
O_2A_O03-1_U01
potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych
O_2A_U19C-1T-W-12, T-W-3, T-W-11, T-W-10, T-W-8, T-W-6, T-W-7, T-W-1, T-W-4, T-W-5, T-W-9, T-W-2M-3, M-2, M-1S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
O_2A_O03-1_K01
ma świadomość wpływu działalności inżynierskiej na środowisko, potrafi pracować współpracować w zespole nad wyznaczonym zadaniem
O_2A_K03, O_2A_K02, O_2A_K05, O_2A_K04C-1T-W-12, T-W-3, T-W-11, T-W-10, T-W-8, T-W-6, T-W-7, T-W-1, T-W-4, T-W-5, T-W-9, T-W-2, T-A-1M-3, M-2, M-1S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
O_2A_O03-1_W01
ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych
2,0Student nie ma uporządkowanej i pogłębionej wiedzy w zakresie mechaniki konstrukcji obiektów oceanotechnicznych.
3,0Student ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych niezbędną dla rozwiązania problemów na podstawowym poziomie trudności.
3,5Student ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych niezbędną dla rozwiązania problemów na średnim poziomie trudności.
4,0Student ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych niezbędną dla rozwiązania problemów na zaawansowanym podstawowym poziomie trudności.
4,5Student ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych niezbędną dla sformułowania i rozwiązania problemów na średnim poziomie trudności.
5,0Student ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych niezbędną dla sformułowania i rozwiązania problemów na zaawansowanym poziomie trudności.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
O_2A_O03-1_U01
potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych
2,0Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych.
3,0Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych na podstawowym poziomie trudności.
3,5Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych na średnim poziomie trudności.
4,0Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych na zaawansowanym poziomie trudności.
4,5Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych na zaawansowanym poziomie trudności, potrafi wykonać analizę wyników.
5,0Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych na zaawansowanym poziomie trudności, potrafi wykonać analizę wyników i zinterpretować wnioski.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
O_2A_O03-1_K01
ma świadomość wpływu działalności inżynierskiej na środowisko, potrafi pracować współpracować w zespole nad wyznaczonym zadaniem
2,0Student nie rozumie wpływu działalności inżynierskiej na środowisko i odpowiedzialności za podejmowane decyzje oraz zagrożeń występujących w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również nie potrafi pracować w grupie.
3,0Student ma podstawowa świadomość wpływu działalności inżynierskiej na środowisko i odpowiedzialności za podejmowane decyzje oraz zagrożeń występujących w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również potrafi pracować w grupie.
3,5Student ma świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również potrafi pracować w grupie.
4,0Student ma pełna świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również potrafi współdziałać i pracować w grupie.
4,5Student ma pełna świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również potrafi współdziałać i pracować w grupie; ponadto potrafi przekazywać informacje i opinie na tematy poruszane na zajęciach z uwzględnieniem różnych punktów widzenia.
5,0Student ma pełna świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również potrafi współdziałać i pracować w grupie; ponadto potrafi przekazywać informacje i opinie na tematy poruszane na zajęciach z uwzględnieniem różnych punktów widzenia oraz własnej oceny.

Literatura podstawowa

  1. Rakowski, G., Kasprzyk, Z., Metoda elementów skończonych w mechanice konstrukcji, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2005
  2. Hughes, O. F., Ship Structural Design, The Society of Naval Architects and Marine Engineers, Jersey City, New Jersey, 1988
  3. Bai, Y., Marine Structural Design, Elsevier, Amsterdam, 2003
  4. Paik, J. K., Thayamballi, A. K., Ship-Shaped Offshore Installations, Cambridge University Press, Cambridge, 2007

Literatura dodatkowa

  1. Gawroński W., Metoda elementów skończonych w dynamice konstrukcji, ARKADY, Warszawa, 1984
  2. Paik, J. K., Thayamballi, A. K., Ultimate limit state design of steel-plated structures, John Wiley and Sons, West Sussex, 2003

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Przykłady i zadania zgodnie z tematyka prowadzonych wykładów.28
T-A-2Kolokwium nr 1.1
T-A-3Kolokwium nr 2.1
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Warunki i obciążenia środowiskowe statków i obiektów oceanotechnicznych.1
T-W-2Elementy konstrukcyjne kadłuba statku i obiektów offshore i ich modele: wiązania ramowe, płyty usztywnione, usztywnione. Pojęcia ortotropii konstrukcyjnej i pasa współpracującego poszycia, sposoby modelowania płyt usztywnionych.3
T-W-3Wytrzymałość ogólna kadłuba – zginanie, ścinanie, skręcanie.3
T-W-4Wytrzymałość strefowa i lokalna, naprężenia pierwszego, drugiego i trzeciego rzędu, koncentracja naprężeń.3
T-W-5Stateczność elementów konstrukcyjnych: płyt i paneli usztywnionych; postacie wyboczenia, metody analizy.3
T-W-6Modelowanie elementów konstrukcyjnych kadłuba w MES, technika submodellingu.2
T-W-7Pojęcie stanu granicznego konstrukcji, projektowanie metodą stanów granicznych.2
T-W-8Pojęcie wytrzymałości zmęczeniowej, czynniki wpływające na wytrzymałość zmęczeniową.2
T-W-9Krótko- i długoterminowa prognoza naprężeń.2
T-W-10Wytrzymałość zmęczeniowa w oparciu o krzywe S-N i mechanikę pękania.3
T-W-11Rodzaje naprężeń wykorzystywnae w analizie wytrzymałości zmęczeniowej: "nominal", "hot-spot", "notch". Korekta krzywych S-N.3
T-W-12Ocena wytrzymałości zmęczeniowej wg przepisów towarzystw klasyfikacyjnych.3
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach30
A-A-2Przygotowanie się do kolokwiów8
38
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach30
A-W-2Przygotowanie do zaliczenia formy zajęć6
A-W-3Udział w egzaminie2
38
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięO_2A_O03-1_W01ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych
Odniesienie do efektów kształcenia dla kierunku studiówO_2A_W15ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji i technologii budowy obiektów oceanotechnicznych
Cel przedmiotuC-1Zapoznanie studentów z podstawami teoretycznymi i metodami analizy wytrzymałości statycznej i zmęczeniowej kadłuba okrętowego i obiektów offshore oraz stateczności elementów konstrukcyjnych.
Treści programoweT-W-3Wytrzymałość ogólna kadłuba – zginanie, ścinanie, skręcanie.
T-W-6Modelowanie elementów konstrukcyjnych kadłuba w MES, technika submodellingu.
T-W-7Pojęcie stanu granicznego konstrukcji, projektowanie metodą stanów granicznych.
T-W-4Wytrzymałość strefowa i lokalna, naprężenia pierwszego, drugiego i trzeciego rzędu, koncentracja naprężeń.
T-W-5Stateczność elementów konstrukcyjnych: płyt i paneli usztywnionych; postacie wyboczenia, metody analizy.
T-W-2Elementy konstrukcyjne kadłuba statku i obiektów offshore i ich modele: wiązania ramowe, płyty usztywnione, usztywnione. Pojęcia ortotropii konstrukcyjnej i pasa współpracującego poszycia, sposoby modelowania płyt usztywnionych.
Metody nauczaniaM-3Metody praktyczne: pokaz, ćwiczenia przedmiotowe.
M-2Metody problemowe: wykład problemowy.
M-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
Sposób ocenyS-2Ocena podsumowująca: Ocena na podstawie wyników pracy zaliczeniowej (wykłady).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma uporządkowanej i pogłębionej wiedzy w zakresie mechaniki konstrukcji obiektów oceanotechnicznych.
3,0Student ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych niezbędną dla rozwiązania problemów na podstawowym poziomie trudności.
3,5Student ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych niezbędną dla rozwiązania problemów na średnim poziomie trudności.
4,0Student ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych niezbędną dla rozwiązania problemów na zaawansowanym podstawowym poziomie trudności.
4,5Student ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych niezbędną dla sformułowania i rozwiązania problemów na średnim poziomie trudności.
5,0Student ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji obiektów oceanotechnicznych niezbędną dla sformułowania i rozwiązania problemów na zaawansowanym poziomie trudności.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięO_2A_O03-1_U01potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych
Odniesienie do efektów kształcenia dla kierunku studiówO_2A_U19potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych
Cel przedmiotuC-1Zapoznanie studentów z podstawami teoretycznymi i metodami analizy wytrzymałości statycznej i zmęczeniowej kadłuba okrętowego i obiektów offshore oraz stateczności elementów konstrukcyjnych.
Treści programoweT-W-12Ocena wytrzymałości zmęczeniowej wg przepisów towarzystw klasyfikacyjnych.
T-W-3Wytrzymałość ogólna kadłuba – zginanie, ścinanie, skręcanie.
T-W-11Rodzaje naprężeń wykorzystywnae w analizie wytrzymałości zmęczeniowej: "nominal", "hot-spot", "notch". Korekta krzywych S-N.
T-W-10Wytrzymałość zmęczeniowa w oparciu o krzywe S-N i mechanikę pękania.
T-W-8Pojęcie wytrzymałości zmęczeniowej, czynniki wpływające na wytrzymałość zmęczeniową.
T-W-6Modelowanie elementów konstrukcyjnych kadłuba w MES, technika submodellingu.
T-W-7Pojęcie stanu granicznego konstrukcji, projektowanie metodą stanów granicznych.
T-W-1Warunki i obciążenia środowiskowe statków i obiektów oceanotechnicznych.
T-W-4Wytrzymałość strefowa i lokalna, naprężenia pierwszego, drugiego i trzeciego rzędu, koncentracja naprężeń.
T-W-5Stateczność elementów konstrukcyjnych: płyt i paneli usztywnionych; postacie wyboczenia, metody analizy.
T-W-9Krótko- i długoterminowa prognoza naprężeń.
T-W-2Elementy konstrukcyjne kadłuba statku i obiektów offshore i ich modele: wiązania ramowe, płyty usztywnione, usztywnione. Pojęcia ortotropii konstrukcyjnej i pasa współpracującego poszycia, sposoby modelowania płyt usztywnionych.
Metody nauczaniaM-3Metody praktyczne: pokaz, ćwiczenia przedmiotowe.
M-2Metody problemowe: wykład problemowy.
M-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
Sposób ocenyS-2Ocena podsumowująca: Ocena na podstawie wyników pracy zaliczeniowej (wykłady).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych.
3,0Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych na podstawowym poziomie trudności.
3,5Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych na średnim poziomie trudności.
4,0Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych na zaawansowanym poziomie trudności.
4,5Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych na zaawansowanym poziomie trudności, potrafi wykonać analizę wyników.
5,0Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych na zaawansowanym poziomie trudności, potrafi wykonać analizę wyników i zinterpretować wnioski.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięO_2A_O03-1_K01ma świadomość wpływu działalności inżynierskiej na środowisko, potrafi pracować współpracować w zespole nad wyznaczonym zadaniem
Odniesienie do efektów kształcenia dla kierunku studiówO_2A_K03potrafi współpracować i realizować zadania w grupie oraz ma świadomość konieczności odpowiedniego podziału obowiązków
O_2A_K02ma świadomość wpływu działalności inżynierskiej na otoczenie i środowisko oraz rozumie związaną z tym odpowiedzialność za podejmowane decyzje, w szczególności w odniesieniu do bezpieczeństwa własnego i innych osób oraz ochrony środowiska
O_2A_K05potrafi dokonać analizy zadań przydzielonych do realizacji, określając odpowiednie priorytety pozwalające na możliwie efektywne wykonanie tych zadań
O_2A_K04rozumie konieczność działań zespołowych i potrafi brać odpowiedzialność za wyniki wspólnych działań
Cel przedmiotuC-1Zapoznanie studentów z podstawami teoretycznymi i metodami analizy wytrzymałości statycznej i zmęczeniowej kadłuba okrętowego i obiektów offshore oraz stateczności elementów konstrukcyjnych.
Treści programoweT-W-12Ocena wytrzymałości zmęczeniowej wg przepisów towarzystw klasyfikacyjnych.
T-W-3Wytrzymałość ogólna kadłuba – zginanie, ścinanie, skręcanie.
T-W-11Rodzaje naprężeń wykorzystywnae w analizie wytrzymałości zmęczeniowej: "nominal", "hot-spot", "notch". Korekta krzywych S-N.
T-W-10Wytrzymałość zmęczeniowa w oparciu o krzywe S-N i mechanikę pękania.
T-W-8Pojęcie wytrzymałości zmęczeniowej, czynniki wpływające na wytrzymałość zmęczeniową.
T-W-6Modelowanie elementów konstrukcyjnych kadłuba w MES, technika submodellingu.
T-W-7Pojęcie stanu granicznego konstrukcji, projektowanie metodą stanów granicznych.
T-W-1Warunki i obciążenia środowiskowe statków i obiektów oceanotechnicznych.
T-W-4Wytrzymałość strefowa i lokalna, naprężenia pierwszego, drugiego i trzeciego rzędu, koncentracja naprężeń.
T-W-5Stateczność elementów konstrukcyjnych: płyt i paneli usztywnionych; postacie wyboczenia, metody analizy.
T-W-9Krótko- i długoterminowa prognoza naprężeń.
T-W-2Elementy konstrukcyjne kadłuba statku i obiektów offshore i ich modele: wiązania ramowe, płyty usztywnione, usztywnione. Pojęcia ortotropii konstrukcyjnej i pasa współpracującego poszycia, sposoby modelowania płyt usztywnionych.
T-A-1Przykłady i zadania zgodnie z tematyka prowadzonych wykładów.
Metody nauczaniaM-3Metody praktyczne: pokaz, ćwiczenia przedmiotowe.
M-2Metody problemowe: wykład problemowy.
M-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
Sposób ocenyS-1Ocena formująca: Ocena ciągła.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie rozumie wpływu działalności inżynierskiej na środowisko i odpowiedzialności za podejmowane decyzje oraz zagrożeń występujących w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również nie potrafi pracować w grupie.
3,0Student ma podstawowa świadomość wpływu działalności inżynierskiej na środowisko i odpowiedzialności za podejmowane decyzje oraz zagrożeń występujących w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również potrafi pracować w grupie.
3,5Student ma świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również potrafi pracować w grupie.
4,0Student ma pełna świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również potrafi współdziałać i pracować w grupie.
4,5Student ma pełna świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również potrafi współdziałać i pracować w grupie; ponadto potrafi przekazywać informacje i opinie na tematy poruszane na zajęciach z uwzględnieniem różnych punktów widzenia.
5,0Student ma pełna świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach oddziaływania środowiska morskiego na maszyny i urządzenia, jak również potrafi współdziałać i pracować w grupie; ponadto potrafi przekazywać informacje i opinie na tematy poruszane na zajęciach z uwzględnieniem różnych punktów widzenia oraz własnej oceny.