Wydział Informatyki - Informatyka (S1)
specjalność: Inżynieria komputerowa
Sylabus przedmiotu Zarządzanie informacją 2:
Informacje podstawowe
Kierunek studiów | Informatyka | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Zarządzanie informacją 2 | ||
Specjalność | Inżynieria systemów informacyjnych | ||
Jednostka prowadząca | Katedra Inżynierii Systemów Informacyjnych | ||
Nauczyciel odpowiedzialny | Bożena Śmiałkowska <Bozena.Smialkowska@zut.edu.pl> | ||
Inni nauczyciele | Piotr Buczyński <Piotr.Buczynski@zut.edu.pl>, Jarosław Jankowski <Jaroslaw.Jankowski@zut.edu.pl>, Przemysław Korytkowski <Przemyslaw.Korytkowski@zut.edu.pl>, Magdalena Krakowiak <Magdalena.Krakowiak@zut.edu.pl>, Bartłomiej Małachowski <Bartlomiej.Malachowski@zut.edu.pl>, Krzysztof Michalak <Krzysztof.Michalak@zut.edu.pl> | ||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Zarządzanie informacją 1 |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studentów z nowymi trendami rozwojowymi z zakresu baz danych |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Tworzenie aplikacji w wybranym języku programowania z dostępem do bazy danych poprzez SQL. | 4 |
T-L-2 | Sprawozdanie z poprzedniego laboratorium. Wejściówka. Analiza wydajności systemów z bazą danych. Sprawozdanie z laboratorium. | 2 |
T-L-3 | Definiowanie więzów integralności, konfiguracja baz danych - ustawianie poziomów izolacji. | 4 |
T-L-4 | Badanie czasu i kosztu realizacji przykładowych zapytań do zrealizowanych baz danych. Ćwiczenia z modyfikacją zapytań. Analiza wyników. | 4 |
T-L-5 | Sprawozdanie z poprzednich zajęć. Analiza metod indeksowania, dobór indeksu. | 2 |
T-L-6 | Sprawozdanie z poprzednich zajęć. Ćwiczenia w zakresie algorytmów szeregowania i optymalizacji zapytań. Analiza wyników. | 2 |
T-L-7 | Java JPA - konfiguracja aplikacji. Stworzenie prostej klasy mapowanej na relacyjną bazę danych. Utrwalanie i wczytywnaie obiektów. | 2 |
T-L-8 | Java JPA - projekt i realizacja prostej aplikacji bazodanowej wykorzystującej model danych zawierający relacje jeden do wielu i wiele do wielu. Wykorzystanie operacji kaskadowych zdefiniowanych na relacjach. Zaawansowane wyszukiwanie obiektów z użyciej JPQL. | 4 |
T-L-9 | Instalacja, kofiguracja i zarządzanie serwerem baz danych NoSQL na przykładzie MongoDB | 2 |
T-L-10 | Projekt i budowa prostej aplikacji bazodanowej z użyciem bazy danych typu NoSQL | 4 |
30 | ||
wykłady | ||
T-W-1 | Model obiektowej bazy danych. Ramowa architektura systemu z obiektową bazą danych. Polecenia w OQL. Dostęp do obiektów, metod i atrybutów. Wyrażenia ścieżkowe. | 3 |
T-W-2 | Przykłady. Wiązanie SQL z językami programowania. Wiązanie z C++ oraz PL/SQL. Tworzenie aplikacji odwołujących się do bazy danych wraz z ochroną i opracowaniem dostępu do bazy danych z wykorzystaniem sterowników. | 2 |
T-W-3 | Wprowadzenie do hurtowni i magazynów danych. Modele danych w hurtowniach danych – wymiary i fakty. Metody projektowania magazynów i hurtowni danych. Narzędzia OLAP w bazach i hurtowniach danych. | 2 |
T-W-4 | Zarządzanie transakcjami - własności transakcji (postulat ACID), operacje i historia przetwarzania transakcji, transakcje współbieżne. Poziomy izolacji (poziomy konflikowości) i związane z nimi anomalie przetwarzania. Metoda znaczników czasowych w zarządzaniu transakcjami. Inne metody blokowania transakcji (wielowersyjny algorytm blokowania dwufazowego). | 2 |
T-W-5 | Moduł planisty i menedżer danych. Protokół blokowania dwufazowego. Zakleszczenie transakcji. Blokowanie z różnymi poziomami izolacji. Optymalizacja zapytań kosztowa i czasowa. Przetwarzanie i ewaluacja zapytań - rozkład zapytania, reguły przekształcania operacji algebry relacji. Szacowanie kosztu operacji algebry relacji, statystyki bazy danych. Optymalizacja zapytań - metody heurystyczne, z wykorzystaniem cache, oparte na regułach i na analizie kosztów. | 6 |
T-W-6 | Bazy danych statystycznych. Bazy NoSQL i NewSQL. Bazy danych multimedialnych. | 6 |
T-W-7 | Odwzorowania obiektowo-relacyjne. Idea i zastosowanie. Pojęcie trwałych obiektów. Relacje między obiektami. Kaskadowość i kierunkość relacji. Realizacja ORM w języku Java na przykładzie Java Persistence API (JPA). Biblioteki implementujące interfejs JPA. Konfiguracja, deifiniowanie mapowanych klas, definiowanie relacji. Utrwalanie i wczytywanie obiektów. Wyszukiwanie obiektów. Zaawansowane wyszukiwanie obiektów z użyciem języka zapytań JPA Query Lanaguage (JPQL). | 4 |
T-W-8 | Grafowe bazy danych, SPARQL | 5 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | udział w zajęciach | 30 |
A-L-2 | przygotowanie do zajęć - praca własna studenta, konsultacje | 18 |
A-L-3 | Udział w konsultacjach | 2 |
50 | ||
wykłady | ||
A-W-1 | udział w wykładzie | 30 |
A-W-2 | przygotowanie do zaliczenia i konsultacje | 18 |
A-W-3 | Udział w konsultacjach | 2 |
50 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład z prezentacją |
M-2 | Laboratorium - Metoda przypadków z dyskusją |
M-3 | Metoda objaśniająco-poglądowa - wykład z prezentacjami i przykładami. |
M-4 | Metoda problemowa z dyskusją - w ramach zajęć praktycznych realizacja zadań indywidualnych. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Wykład: ocena podsumowująca - Egzamin pisemny z pytaniami weryfikującymi uzyskanie efektów |
S-2 | Ocena formująca: Laboratorium : Ogólna ocena formująca oraz ocena sprawozdań, wejściówek i aktywnej obecności |
S-3 | Ocena podsumowująca: Wykład: ocena podsumowująca na podstawie zaliczenia pisemnego. |
S-4 | Ocena formująca: Laboratorium: ocena kształtująca na podstawie bieżących sprawozdań z wykonanych zadań |
S-5 | Ocena podsumowująca: Laboratorium: ocena podsumowująca na podstawie wykonanego zadania i obecności oraz aktywności na zajęciach. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
I_1A_D03.02_W01 Student zna metody optymalizacji zapytań i rozumie wagę tej optymalizacji w zarządzaniu dostępem do zasobów w systemach baz danych | I_1A_W02, I_1A_W03 | — | — | C-1 | T-W-2, T-L-4, T-L-5, T-L-6, T-W-5 | M-3 | S-1 |
I_1A_D03.02_W02 Student posiada wiedzę o nierelacyjnych bazach danych (bazy grafowe, obiektowe, multimedialne, NoSQL< NewSQL hurtownie danych) | I_1A_W02, I_1A_W03 | — | — | C-1 | T-W-1, T-W-6, T-W-7, T-L-7, T-L-8, T-L-9, T-L-10, T-W-8 | M-3 | S-3 |
I_1A_D03.02_W03 Student ma poszerzoną wiedzę o zarządzaniu transakcjami w systemach z bazą danych | I_1A_W03 | — | — | C-1 | T-L-3, T-W-4 | M-3 | S-3 |
I_1A_D03.02_W04 Student ma wiedzę o metodach ochrony danych w szczególności o ochronie statystycznych baz danych | I_1A_W03, I_1A_W07 | — | — | C-1 | T-L-3, T-W-6 | M-3 | S-1 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
I_1A_D03.02_U01 Student umie analizować wydajność systemu z bazą danych | I_1A_U02, I_1A_U04 | — | — | C-1 | T-L-1, T-L-2, T-L-3, T-L-4, T-L-5, T-W-5 | M-2, M-4 | S-4, S-5 |
I_1A_D03.02_U02 Student potrafi budować aplikacje bazodanowe typu NoSQL oraz odwołujące się do obiektów | I_1A_U03, I_1A_U09 | — | — | C-1 | T-W-3, T-W-7, T-L-7, T-L-8, T-L-9, T-L-10, T-W-8 | M-2, M-4 | S-4, S-5 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
I_1A_D03.02_W01 Student zna metody optymalizacji zapytań i rozumie wagę tej optymalizacji w zarządzaniu dostępem do zasobów w systemach baz danych | 2,0 | nie ma wiedzy na poziomie oceny 3,0. |
3,0 | student potrafi wymienić podstawowe metody optymalizacji zapytań w relacyjnej bazie danych i wie po co są stosowane takie metody | |
3,5 | student posiada wiedzę na poziomie dostatecznym i potrafi wymienić metody indeksowania relacyjnych baz danych | |
4,0 | student ma wiedzę na poziomie 3,5 i dodatkowo potrafi opisać zasady optymalizacji zapytań przez przestawianie oraz określić rodzaj tej optymalizacji zapytań | |
4,5 | ma wiedzę na poziomie 4,0 i potrafi omówić metodę kosztową optymalizacji zapytań | |
5,0 | student ma wiedzę na poziomie 4,5, zna metodę opartą na cache oraz dodatkowo potrafi wskazać i uzasadnić wybór metody optymalizacji zapytań w zadanej przykładowo bazie danych | |
I_1A_D03.02_W02 Student posiada wiedzę o nierelacyjnych bazach danych (bazy grafowe, obiektowe, multimedialne, NoSQL< NewSQL hurtownie danych) | 2,0 | nie ma wiedzy na poziomie 3,0. |
3,0 | student potrafi wymienić nierelacyjne bazy danych i podać przykład zastosowania takich baz | |
3,5 | student ma wiedzę na poziomie 3,0 i dodatkowo potrafi wskazać różnice między bazą obiektową a relacyjną | |
4,0 | student ma wiedzę na poziomie 3,5 i dodatkowo potrafi wskazać różnicę miedzy realcyjnymi a multimedialnymi bazami danych | |
4,5 | student ma wiedzę na poziomie 4,0 i dodatkowo potrafi wskazać zadania i funkcje hurtowni danych | |
5,0 | student posiada wiedzę na poziomie 4,5 i dodatkowo zna zastosowania baz NewSQL i NoSQL. Potrafi wymienić przykładowe zastosowania w tych grupach baz. | |
I_1A_D03.02_W03 Student ma poszerzoną wiedzę o zarządzaniu transakcjami w systemach z bazą danych | 2,0 | nie ma wiedzy na poziomie 3,0 |
3,0 | student potrafi zinterpretować symbol ACID | |
3,5 | student ma wiedzę na poziomie 3,0 i dodatkowo umie wyjaśnić zasady dwufazowego blokowania oraz potrafi określić inne metody blokowania transakcji | |
4,0 | student ma wiedzę na poziomie 3,5 i potrafi wyjaśnić zasady optymistycznego zarządzania transakcjami | |
4,5 | student ma wiedzę na poziomie 4,0 i dodatkowo potrafi wymienić zasady izolacji transakcji | |
5,0 | student ma wiedzę na poziomie 4,5 i potrafi wyjaśnić zasady zarządzania transakcjami w rozproszonych bazach danych | |
I_1A_D03.02_W04 Student ma wiedzę o metodach ochrony danych w szczególności o ochronie statystycznych baz danych | 2,0 | nie ma wiedzy na poziomie 3,0 |
3,0 | student umie wskazać cechy ststystycznych baz danych oraz zna ogólne zasady ochrony relacyjnych bazy danych przed niepowołanym dostępem | |
3,5 | student ma wiedzę na poziomie 3,0 oraz potrafi podać klasyfikację metod ochrony statystycznych baz danych | |
4,0 | student ma wiedzę na poziomie 3,5 i potrafi scharakteryzować metodę ochrony statystycznej bazy danych przez ograniczanie liczby zapytań. | |
4,5 | student ma wiedzę na poziomie 4,0 i potrafi scharakteryzować jedną z metod księgowania zapytań. | |
5,0 | student ma wiedzę na poziomie 4,5 i zna metody hybrydowej ochrony statystycznych baz danychoraz potrafi podać wady metod ochrony statystycznych baz danych |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
I_1A_D03.02_U01 Student umie analizować wydajność systemu z bazą danych | 2,0 | nie ma wiedzy na poziomie 3,0 |
3,0 | student potrafi analizować zmianę wydajności bazy danych poprzez dobór indeksów do sposobu użytkowania bazy danych | |
3,5 | student posiada umiejci na poziomie 3,0 i dodatkowo potrafi analizować i modyfikować zapytanie z wykorzystaniem metod przepisywania zapytania | |
4,0 | student posiada umiejetności na poziomie 3,5 i dodatkowo umie zmniejszyć koszt wykonywania przykładowych zapytań | |
4,5 | student posiada umiejetności na poziomie 4,0 i dodatkowo umie napisać aplikację do analizy wydajności bazy danych | |
5,0 | student posiada umiejetności na poziomie 4,5 i dodatkowo umiewykorzystać aplikację do zwiększenia wydajności przykładowej bazy danych | |
I_1A_D03.02_U02 Student potrafi budować aplikacje bazodanowe typu NoSQL oraz odwołujące się do obiektów | 2,0 | student nie ma umiejętnosci na poziomie 3,0 |
3,0 | student potrafi utworzyć aplikację bazodanową zawierajacą relację jeden do jeden wiele do wielu | |
3,5 | student ma umiejętności na poziomie 3,0 oraz potrafi utworzyć prostą klasę mapującą w Java Persistance API (JPA) | |
4,0 | student ma umiejętności na poziomie 3,5 oraz potrafi skonfigurować serwer bazy MongoDB i wykonać proste zadania na tej bazie | |
4,5 | student ma umiejętności na poziomie 4,0 i dodatkowo potrafi w pełni zarządzać serwerem bazy MongoDB | |
5,0 | student osiągną umiejętności na poziomie 4,5 i dodatkowo wykazał się umiejętnością w tworzeniu złożonych klas mapujących lub tworzenia zlożonych funkcji związanych z zarządzaniem danymi w bazie MongoDB |
Literatura podstawowa
- Beynon-Davies P, Systemy baz danych., WNT, Warszawa, 2003
- Bałachowski L., Systemy zarzadzania bazami danych, Polsko-Japońska Wyższa Szkoła Technik Komputerowych, Warszawa, 2007
- Ullman J., Podstawowy wykład z systemów baz danych, WNT, Warszawa, 2000
- Looney K., Theriault M., Podrecznik administratora baz danych, Helion, Gliwice, 2003
- Lausen G., Vossen G., Obiektowe bazy danych, WNT, Warszawa, 2000
- Ullman, J., Widom, J., Podstawowy wykład z baz danych, WNT, Warszawa, 2003
- Riordan R., Projektowanie systemów relacyjnych baz danych, RM Warszawa 2000., RM, Warszawa, 2000
Literatura dodatkowa
- Kim W., Wprowadzenie do obiektowych baz danych, WNT, Warszawa, 1996
- Mendrola D., Szeliga M., Praktyczny kurs SQL, Helion, 2011, II
- Christian Bauer, Gavin King, Gary Gregory, Java Persistence. Programowanie aplikacji bazodanowych w Hibernate, Helion, 2016