Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Budownictwa i Architektury - Inżynieria środowiska (S1)

Sylabus przedmiotu Podstawy termodynamiki technicznej-2:

Informacje podstawowe

Kierunek studiów Inżynieria środowiska
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauki techniczne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Podstawy termodynamiki technicznej-2
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Techniki Cieplnej
Nauczyciel odpowiedzialny Aleksander Stachel <Aleksander.Stachel@zut.edu.pl>
Inni nauczyciele Radomir Kaczmarek <Radomir.Kaczmarek@zut.edu.pl>, Tomasz Kujawa <Tomasz.Kujawa@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW3 30 3,01,00egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Matematyka, fizyka

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Wykorzystanie wiedzy z zakresu techniki cieplnej do rozwiązywania problemów technicznych

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
wykłady
T-W-1Praca maksymalna, egzergia, prawo Gouya-Stodoli. Spalanie, równania stechiometryczne, wartośc opałowa i ciepło spalnia, kontrola jakości procesu spalania i straty w procesie spalania. Sprężarki tłokowe, praca sprężania, sprawość wolumetryczna, cieplne oddziaływanie ścian. Silniki spalinowe tłokowe i trubogazowe - obiegi porównawcze, sprawności, regeneracja ciepła. Siłownie parowe, obieg Clausiusa-Rankine'a, sposoby podwyższania sprawności, sprawność siłowni rzeczywistej, obiegi wieloczynnikowe, skojarzone wytwarzanie ciepła i energii elektrycznej. Ziębiarki - klasyfikacja, efektywność energetyczna. Ziębiarki sprężarkowe gazowe i parowe, ziębiarki absorbcyjne i termoelektryczne. Pompy grzejne - typy, efektywność energetyczna, zastosowanie. Złożona wymiana ciepła: wnikanie i przenikanie ciepła. Wymienniki ciepła, obliczanie powierzchni wymiany ciepła.30
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
wykłady
A-W-1Uczestnictwo w zajęciach30
A-W-2Praca własna.30
A-W-3Przygotowanie się do egzaminów60
120

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metody podające: wykład informacyjny

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Egzamin pisemny i ustny

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IS_1A_S1/B/13-2_W01
Student potrafi scharakteryzować procesy przekazywania energii, stosować wiedzę z zakresu termodynamiki do rozwiązywania problemów technicznych
IS_1A_W09, IS_1A_W12C-1T-W-1M-1S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IS_1A_S1/B/13-2_U01
Student potrafi wykorzystywać wiedzę z zakresu techniki cieplnej do rozwiązywania problemów technicznych
IS_1A_U05C-1T-W-1M-1S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IS_1A_S1/B/13-2_K01
Student jest zdeterminowany na dokształcanie się i podnoszenie swoich kompetencji zawodowych i społecznych, jest otwarty na postępowanie zgodnie z zasadami etyki
IS_1A_K01C-1T-W-1M-1S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
IS_1A_S1/B/13-2_W01
Student potrafi scharakteryzować procesy przekazywania energii, stosować wiedzę z zakresu termodynamiki do rozwiązywania problemów technicznych
2,0Student nie potrafi w najprostszy sposób zaprezentować wyników swojej pracy
3,0Student prezentuje wyniki bez umiejetności głębszej analizy
3,5Student prezentuje wyniki z umiejętnościa prostej analizy
4,0Student prezentuje wyniki z umiejętnościa głębszej analizy
4,5Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach oraz oszacować błędy
5,0Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach, a także proponować modyfikacje w istniejących układach

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
IS_1A_S1/B/13-2_U01
Student potrafi wykorzystywać wiedzę z zakresu techniki cieplnej do rozwiązywania problemów technicznych
2,0Student nie potrafi w najprostszy sposób zaprezentować wyników swojej pracy
3,0Student prezentuje wyniki bez umiejetności głębszej analizy
3,5Student prezentuje wyniki z umiejętnościa prostej analizy
4,0Student prezentuje wyniki z umiejętnościa głębszej analizy
4,5Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach oraz oszacować błędy
5,0Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach, a także proponować modyfikacje w istniejących układach

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
IS_1A_S1/B/13-2_K01
Student jest zdeterminowany na dokształcanie się i podnoszenie swoich kompetencji zawodowych i społecznych, jest otwarty na postępowanie zgodnie z zasadami etyki
2,0Student nie potrafi w najprostszy sposób zaprezentować wyników swojej pracy
3,0Student prezentuje wyniki bez umiejetności głębszej analizy
3,5Student prezentuje wyniki z umiejętnościa prostej analizy
4,0Student prezentuje wyniki z umiejętnościa głębszej analizy
4,5Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach oraz oszacować błędy
5,0Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach, a także proponować modyfikacje w istniejących układach

Literatura podstawowa

  1. Staniszewski B.:, Termodynamika., PWN, Warszawa, 1978
  2. Szargut J, Termodynamika techniczna, PWN, Warszawa, 2005
  3. Szargut J., Guzik A., Górniak H., Programowany zbiór zadan z termodynamiki technicznej, PWN, Warszawa, 1979
  4. Foltańska-Werszko D., Teoria systemów cieplnych. Termodynamika - podstawy, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 1997

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Praca maksymalna, egzergia, prawo Gouya-Stodoli. Spalanie, równania stechiometryczne, wartośc opałowa i ciepło spalnia, kontrola jakości procesu spalania i straty w procesie spalania. Sprężarki tłokowe, praca sprężania, sprawość wolumetryczna, cieplne oddziaływanie ścian. Silniki spalinowe tłokowe i trubogazowe - obiegi porównawcze, sprawności, regeneracja ciepła. Siłownie parowe, obieg Clausiusa-Rankine'a, sposoby podwyższania sprawności, sprawność siłowni rzeczywistej, obiegi wieloczynnikowe, skojarzone wytwarzanie ciepła i energii elektrycznej. Ziębiarki - klasyfikacja, efektywność energetyczna. Ziębiarki sprężarkowe gazowe i parowe, ziębiarki absorbcyjne i termoelektryczne. Pompy grzejne - typy, efektywność energetyczna, zastosowanie. Złożona wymiana ciepła: wnikanie i przenikanie ciepła. Wymienniki ciepła, obliczanie powierzchni wymiany ciepła.30
30

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach30
A-W-2Praca własna.30
A-W-3Przygotowanie się do egzaminów60
120
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIS_1A_S1/B/13-2_W01Student potrafi scharakteryzować procesy przekazywania energii, stosować wiedzę z zakresu termodynamiki do rozwiązywania problemów technicznych
Odniesienie do efektów kształcenia dla kierunku studiówIS_1A_W09Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia inżynierii środowiska dotyczące: •termodynamiki technicznej, • wymiany ciepła i masy, • mechaniki płynów, • biologii i chemii
IS_1A_W12Ma szczegółową wiedzę związaną z: •bilansowaniem energetycznym, •przewodnictwem ciepła, konwekcją, promieniowaniem przenikaniem ciepła, •przepływem płynów ściśliwych i nieściśliwych w instalacjach, •przepływem płynów ściśliwych i nieściśliwych w maszynach przepływowych i tłokowych stosowanych w inżynierii środowiska, •przemianami termodynamicznymi wykorzystywanymi w głównych obszarach inżynierii środowiska , •ze spalaniem paliw w tym spalaniem niskoemisyjnym
Cel przedmiotuC-1Wykorzystanie wiedzy z zakresu techniki cieplnej do rozwiązywania problemów technicznych
Treści programoweT-W-1Praca maksymalna, egzergia, prawo Gouya-Stodoli. Spalanie, równania stechiometryczne, wartośc opałowa i ciepło spalnia, kontrola jakości procesu spalania i straty w procesie spalania. Sprężarki tłokowe, praca sprężania, sprawość wolumetryczna, cieplne oddziaływanie ścian. Silniki spalinowe tłokowe i trubogazowe - obiegi porównawcze, sprawności, regeneracja ciepła. Siłownie parowe, obieg Clausiusa-Rankine'a, sposoby podwyższania sprawności, sprawność siłowni rzeczywistej, obiegi wieloczynnikowe, skojarzone wytwarzanie ciepła i energii elektrycznej. Ziębiarki - klasyfikacja, efektywność energetyczna. Ziębiarki sprężarkowe gazowe i parowe, ziębiarki absorbcyjne i termoelektryczne. Pompy grzejne - typy, efektywność energetyczna, zastosowanie. Złożona wymiana ciepła: wnikanie i przenikanie ciepła. Wymienniki ciepła, obliczanie powierzchni wymiany ciepła.
Metody nauczaniaM-1Metody podające: wykład informacyjny
Sposób ocenyS-1Ocena podsumowująca: Egzamin pisemny i ustny
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi w najprostszy sposób zaprezentować wyników swojej pracy
3,0Student prezentuje wyniki bez umiejetności głębszej analizy
3,5Student prezentuje wyniki z umiejętnościa prostej analizy
4,0Student prezentuje wyniki z umiejętnościa głębszej analizy
4,5Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach oraz oszacować błędy
5,0Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach, a także proponować modyfikacje w istniejących układach
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIS_1A_S1/B/13-2_U01Student potrafi wykorzystywać wiedzę z zakresu techniki cieplnej do rozwiązywania problemów technicznych
Odniesienie do efektów kształcenia dla kierunku studiówIS_1A_U05Potrafi rozwiązać podstawowe zagadnienia inżynierskie z zakresu studiowanego kierunku
Cel przedmiotuC-1Wykorzystanie wiedzy z zakresu techniki cieplnej do rozwiązywania problemów technicznych
Treści programoweT-W-1Praca maksymalna, egzergia, prawo Gouya-Stodoli. Spalanie, równania stechiometryczne, wartośc opałowa i ciepło spalnia, kontrola jakości procesu spalania i straty w procesie spalania. Sprężarki tłokowe, praca sprężania, sprawość wolumetryczna, cieplne oddziaływanie ścian. Silniki spalinowe tłokowe i trubogazowe - obiegi porównawcze, sprawności, regeneracja ciepła. Siłownie parowe, obieg Clausiusa-Rankine'a, sposoby podwyższania sprawności, sprawność siłowni rzeczywistej, obiegi wieloczynnikowe, skojarzone wytwarzanie ciepła i energii elektrycznej. Ziębiarki - klasyfikacja, efektywność energetyczna. Ziębiarki sprężarkowe gazowe i parowe, ziębiarki absorbcyjne i termoelektryczne. Pompy grzejne - typy, efektywność energetyczna, zastosowanie. Złożona wymiana ciepła: wnikanie i przenikanie ciepła. Wymienniki ciepła, obliczanie powierzchni wymiany ciepła.
Metody nauczaniaM-1Metody podające: wykład informacyjny
Sposób ocenyS-1Ocena podsumowująca: Egzamin pisemny i ustny
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi w najprostszy sposób zaprezentować wyników swojej pracy
3,0Student prezentuje wyniki bez umiejetności głębszej analizy
3,5Student prezentuje wyniki z umiejętnościa prostej analizy
4,0Student prezentuje wyniki z umiejętnościa głębszej analizy
4,5Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach oraz oszacować błędy
5,0Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach, a także proponować modyfikacje w istniejących układach
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIS_1A_S1/B/13-2_K01Student jest zdeterminowany na dokształcanie się i podnoszenie swoich kompetencji zawodowych i społecznych, jest otwarty na postępowanie zgodnie z zasadami etyki
Odniesienie do efektów kształcenia dla kierunku studiówIS_1A_K01Rozumie potrzebę uczenia się przez całe życie. Potrafi inspirować i organizować proces uczenia się innych osób
Cel przedmiotuC-1Wykorzystanie wiedzy z zakresu techniki cieplnej do rozwiązywania problemów technicznych
Treści programoweT-W-1Praca maksymalna, egzergia, prawo Gouya-Stodoli. Spalanie, równania stechiometryczne, wartośc opałowa i ciepło spalnia, kontrola jakości procesu spalania i straty w procesie spalania. Sprężarki tłokowe, praca sprężania, sprawość wolumetryczna, cieplne oddziaływanie ścian. Silniki spalinowe tłokowe i trubogazowe - obiegi porównawcze, sprawności, regeneracja ciepła. Siłownie parowe, obieg Clausiusa-Rankine'a, sposoby podwyższania sprawności, sprawność siłowni rzeczywistej, obiegi wieloczynnikowe, skojarzone wytwarzanie ciepła i energii elektrycznej. Ziębiarki - klasyfikacja, efektywność energetyczna. Ziębiarki sprężarkowe gazowe i parowe, ziębiarki absorbcyjne i termoelektryczne. Pompy grzejne - typy, efektywność energetyczna, zastosowanie. Złożona wymiana ciepła: wnikanie i przenikanie ciepła. Wymienniki ciepła, obliczanie powierzchni wymiany ciepła.
Metody nauczaniaM-1Metody podające: wykład informacyjny
Sposób ocenyS-1Ocena podsumowująca: Egzamin pisemny i ustny
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi w najprostszy sposób zaprezentować wyników swojej pracy
3,0Student prezentuje wyniki bez umiejetności głębszej analizy
3,5Student prezentuje wyniki z umiejętnościa prostej analizy
4,0Student prezentuje wyniki z umiejętnościa głębszej analizy
4,5Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach oraz oszacować błędy
5,0Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach, a także proponować modyfikacje w istniejących układach