Wydział Biotechnologii i Hodowli Zwierząt - Biotechnologia (S2)
specjalność: Nanobioinżynieria
Sylabus przedmiotu Genomika i proteomika:
Informacje podstawowe
Kierunek studiów | Biotechnologia | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | nauki rolnicze, leśne i weterynaryjne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Genomika i proteomika | ||
Specjalność | Nanobioinżynieria | ||
Jednostka prowadząca | Katedra Fizjologii, Cytobiologii i Proteomiki | ||
Nauczyciel odpowiedzialny | Małgorzata Ożgo <Malgorzata.Ozgo@zut.edu.pl> | ||
Inni nauczyciele | Alicja Dratwa-Chałupnik <Alicja.Dratwa-Chalupnik@zut.edu.pl>, Agnieszka Herosimczyk <Agnieszka.Herosimczyk@zut.edu.pl>, Adam Lepczyński <Adam.Lepczynski@zut.edu.pl>, Katarzyna Michałek <Katarzyna.Michalek@zut.edu.pl>, Daniel Polasik <Daniel.Polasik@zut.edu.pl>, Iwona Szatkowska <Iwona.Szatkowska@zut.edu.pl> | ||
ECTS (planowane) | 3,0 | ECTS (formy) | 3,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Wiedza z zakresu genetyki molekularnej i inżynierii genetycznej |
W-2 | Podstawowa wiedza z zakresu biochemii. |
W-3 | Podstawowa wiedza z zakresu biologii komórki. |
W-4 | Podstawowe wiedza z zakresu genetyki. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Przedstawienie zagadnień związanych analizą genomu |
C-2 | Przedstawienie projektów poznania genomów i metod ich realizacji |
C-3 | Zapoznanie z bazami danych jako formy prezentacji wyników analizy genomów |
C-4 | Przekazanie studentom wiedzy z zakresu proteomiki i jej zastosowania w badaniu czynności organizmów. |
C-5 | Przekazanie wiedzy dotyczacej podstawowych technik analitycznych wykorzystywanych w badaniach proteomicznych. |
C-6 | Przekazanie wiedzy praktycznej z zakresu przygotowania prób oraz wykorzystania wybranych technik proteomicznych do analizy składu białkowego tkanek oraz płynów ustrojowych (elektroforeza 1-DE, 2-DE, western-blot, spektrometria mas typu MALDI-TOF) |
C-7 | Głównym celem prowadzonych zajeć jest przekazanie studentom wiedzy z zakresu proteomiki i jej zastosowania w badaniu czynności organizmów. |
C-8 | Przekazanie wiedzy na temat podstawowych technik analitycznych wykorzystywanych w badaniach proteomicznych (elektroforeza 1-, 2-D, western-blot, spektrometria mas) oraz detekcji, archiwizacji i analizy bioinformatycznej obrazów żeli. |
C-9 | Przekazanie wiedzy praktycznej z zakresu podstawowych technik analitycznych z zakresu badań proteomicznych (elektroforeza 1-D, 2-D, western blot, spektrometria mas). |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Izolacja DNA plazmidowego | 2 |
T-L-2 | Tworzenie mapy restrykcyjnej. Analiza restrykcyjna. | 4 |
T-L-3 | Izolacja i analiza mtDNA | 6 |
T-L-4 | Wykozrystanie narzędzi bioinformatycznych w genomice | 3 |
T-L-5 | Cel analizy proteomu i identyfikacji białek, przygotowanie materiału biologicznego, liza komórek, bufory lizujące (czynniki chaotropowe, detergenty, czynniki redukujące, amfolity), metody oczyszczania złożonych preparatów biologicznych, metody precypitacji białek. 1. Usuwanie białek wysokokopijnych z osocza krwi z wykorzystaniem IgG and albumin removal kit. | 2 |
T-L-6 | Podstawowe składniki żeli poliakrylamidowych, żele gradientowe, elektroforeza w warunkach denaturujących SDS-PAGE, technika przygotowania i wykorzystania żeli zminiaturyzowanych, czynniki wpływające na rozdział białek 1. Przygotowanie zminiaturyzowanych żeli z wykorzystaniem zestawu: MINI- PROTEAN TETRA CELL. 2. Rozdział białek z użyciem 1-DE. | 2 |
T-L-7 | Określenie białka całkowitego w analizowanych próbach biologicznych. Znaczenie procesu rehydratacji, zasady ogniskowania izoelektrycznego. 1. Przygotowanie ogniskowania izoelektrycznego z wykorzystaniem zestawu: PROTEAN IEF (paski IPG - 7cm). | 2 |
T-L-8 | Główne składniki buforu rehydratacyjnego i ich funkcja, znaczenie równoważenia pasków, skład i rola buforu migracyjnego, drugi wymiar elektroforezy 2-DE – rozdział białek w warunkach denaturujących. 1. Przygotwanie zogniskowanych pasków IPG do rozdziału w drugim kierunku. | 2 |
T-L-9 | Detekcja białek. Archiwizacja obrazów żeli 1- oraz 2-D. 1. Barwienie żeli po rozdziale elektroforetycznym z użyciem błękitu coomassie. 2. Cyfrowy zapis żeli barwionych z użyciem różnych technik detekcji białek. | 3 |
T-L-10 | Zasady desorpcji/jonizacji laserowej wspomaganej matrycą (MALDI) z detekcją czasu przelotu (TOF), enzymy proteolityczne stosowane w przygotowywaniu próbek do identyfikacji przy użyciu spektrometru mas, rola matrycy stosowanej w technikach MALDI, techniki nakładania prób na płytki do MS. Bioinformatyczne bazy danych, zasada identyfikacji białek przy uzyciu "odcisku palca" mapy peptydowej. 1. Wycinanie z żelu poliakryloamidowego spotów białkowych manualnie oraz z wykorzystaniem Spot Cutter EXQuest. 2. Przygotowanie spotów białkowych do analizy spektrometrii masowej. 3. Jonizacja i odczyt widm masowych z wykorzystaniem programu flexControl. 4. Analiza uzyskanych widm masowych przy uzyciu flexAnalysis. 5. Porównywanie uzyskanych widm z obrazami dostepnymi w bazach danych przy uzyciu bioTools. | 2 |
T-L-11 | Identyfikacja białek przy uzyciu techniki Western-Blot: Transfer białek z żelu na błonę, rodzaje błon do transferu, transfer "mokry" i "półsuchy", czynniki wpływające na wydajność transferu, immunoblotting. 1. Przygotowanie buforu do transferu. 2. Dokonanie transferu połsuchego białek na błonę nitrocelulozową przy uzyciu zestawu: TRANS-BLOT SEMI DRY. | 2 |
30 | ||
wykłady | ||
T-W-1 | Rozwój dyscypliny, podstawowe pojęcia, dziedziny, projekty | 2 |
T-W-2 | Sekwencjonowanie DNA - poznawanie struktury i organizacji genomów | 3 |
T-W-3 | Genomika funkcjonalna - poznawanie funkcji poszczególnych elementów w genomie | 2 |
T-W-4 | Powstawanie nowych genów w genomie, elementy genomiki porównawczej | 2 |
T-W-5 | Mapowanie fizyczne i genetyczne. | 2 |
T-W-6 | Choroby genomowe - przyczyny, skutki, przykłady | 2 |
T-W-7 | Markery oparte na retrotranspozonach | 2 |
T-W-8 | Proteomika jako wyzwanie współczesnej nauki: Definicja proteomu. Czym jest proteomika i jakie stawia sobie cele badawcze we współczesnej nauce. Gałęzie proteomiki. | 3 |
T-W-9 | Metody rozdziału białek – techniki żelowe: Matryce rozdzielające wykorzystywane w elektroforezie. Elektroforeza jednowymiarowa w żelu poliakrylamidowym (SDS-PAGE). Elektroforeza natywna. Elektroforeza dwuwymiarowa w żelu poliakrylamidowym. | 3 |
T-W-10 | Metody detekcji białek: błękit Coomassie, sole srebra, sole cynku i miedzi, autoradiografia, fluorografia, barwniki fluoroscencyjne. Analizy oparte na dwuwymiarowej fluorescencyjnej elektroforezie różnicowej 2D-DIGE. Metody zapisu obrazów żeli po detekcji. Rodzaje programów do analizy obrazów żeli 2-DE oraz ogólna zasada ich zastosowania. | 3 |
T-W-11 | Zastosowanie spektrometrii mas w identyfikacji białek. Wprowadzenie (rys historyczny, podstawowe pojęcia, rodzaje spektrometrów mas i ich możliwości analityczne). Metody jonizacji (krótka charakterystyka, szczegółowe omówienie jonizacji/desorpcji laserowej wspomaganej matrycą – MALDI). Analizatory (rodzaje, szczegółowa charakterystyka analizatora czasu przelotu – TOF). | 3 |
T-W-12 | Zastosowanie i identyfikacja białek z użyciem techniki Westrn-Blot: Przygotowanie próby. Metody transferu. Inkubacja z przeciwciałami. Wizualizacja. | 3 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Przygotowanie do zaliczenia ćwiczeń. | 3 |
A-L-2 | Uczestnictwo w zajęciach | 30 |
A-L-3 | Studiowanie podanej lteratury | 2 |
A-L-4 | Konsultacje | 2 |
A-L-5 | Samodzielne studiowanie tematyki ćwiczeń laboratoryjnych. | 6 |
A-L-6 | Przygotowanie pisemnego sprawozdania z ćwiczeń laboratoryjnych. | 17 |
60 | ||
wykłady | ||
A-W-1 | Uczestnictwo w zajęciach | 30 |
A-W-2 | Samodzielne przygotowanie się do zaliczenia wykładów | 1 |
31 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład wspomagany związany z zaplanowanymi treściami |
M-2 | Prezentacje multimedialne z zastosowaniem komputera i projektora |
M-3 | Praca w grupach laboratoryjnych |
M-4 | Sprawozdanie z przeprowadzonych ćwiczeń laboratoryjnych. |
M-5 | Objaśnienia dotyczące prawidłowego wykonania ćwiczeń laborytoryjnych. |
M-6 | Wykład informacyjny prezentujący zagadnienia teoretyczne. |
M-7 | Prezentacja multimedialna z wykorzystaniem komputera i projektora multimedialnego. |
M-8 | Praca w grupach. |
M-9 | Sprawozdanie z wykonanych ćwiczeń laboratoryjnych. |
M-10 | Objaśnienia dotyczące prawidłowego wykonania ćwiczeń laboratoryjnych. |
M-11 | Wykonywanie w grupach zaplanowanych ćwiczeń laboratoryjnych. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Ocena aktywności i przygotowania na zajecia laboratoryjne |
S-2 | Ocena podsumowująca: Ocena za wiedze z zakresu przedstawionych wykładów oraz ćwiczeń. |
S-3 | Ocena podsumowująca: Ocena sprawozdań z wykonanych ćwiczeń laboratoryjnych. |
S-4 | Ocena podsumowująca: Pisemne zaliczenie tematyki wykładów. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
BTna_2A_NBI2-S-D11_W01 W zakresie wiedzy student objaśnia zagadnienia z zakresu analizy sekwencji genomowych. Potrafi definiować metody realizacji projektów poznawania genomów ludzi i zwierząt. | BTna_2A_W07, BTna_2A_W08 | — | — | C-1, C-2, C-3 | T-L-1, T-L-2, T-L-3, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5 | M-1, M-2, M-3 | S-1, S-2 |
BTna_2A_NBI2-S-D11_W02 W wyniku przeprowadzonych zajeć student potrafi wymienić, techniki analityczne z zakresu badań proteomicznych i objaśnić ich zasady. Zna mechanizmy biochemicznych modyfikacji w procesach prowadzacych do syntezy białek. | BTna_2A_W01, BTna_2A_W06, BTna_2A_W08, BTna_2A_W16 | — | — | C-7, C-8 | T-W-8, T-W-9, T-W-10, T-W-11, T-W-12 | M-6, M-7 | S-4 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
BTna_2A_NBI2-S-D11_U01 Student pozyskał umiejętności całościowego spojrzenia na genom, uwzględniając zarówno jego strukturę i funkcję jak i aspekty dotyczące jego ewolucji. | BTna_2A_U06 | — | — | C-1, C-2 | T-W-2, T-W-3, T-W-4 | M-1, M-2, M-3 | S-1 |
BTna_2A_NBI2-S-D11_U02 Nabył umiejętności zaplanowania odpowiednich strategii badawczych dla poznania struktury genomu, jego funkcji i ewolucji. Poznał mechanizmy oraz czynniki zmniejszających stabilność genomu. Ponadto nabył miejętność zapoznania się z bazami danych zawierającymi zdeponowane dane o sekwencjach i genomach. | BTna_2A_U06, BTna_2A_U08 | — | — | C-1, C-2, C-3 | T-L-1, T-L-2, T-L-3, T-W-5 | M-2, M-3 | S-1 |
BTna_2A_NBI2-S-D11_U03 Student zna podstawowe zasady analiz z użyciem technik proteomicznych (elektroforeza 1DE, 2-DE, western-blot, spektrometria mas), a także główne strategie analiz proteomicznych. Potrafi określić jakie narzędzia są niezbedne do określenia różnic w ekspresji białek pomiedzy profilami białkowymi. Umie formułować i interpretować podstawowe procesy zachodzace w komórkach związane z biosyntezą białek. | BTna_2A_U02, BTna_2A_U05, BTna_2A_U07 | — | — | C-9 | T-L-5, T-L-6, T-L-7, T-L-8, T-L-9, T-L-10, T-L-11 | M-8, M-9, M-10, M-11 | S-3 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
BTna_2A_NBI2-S-D11_K01 Student potrafi kreowac aktywna postawę, ma zdolność do kompleksowego spojrzenia na analizowane fakty oraz widzi zagadnienia w szerszym kontekście. | BTna_2A_K05 | — | — | C-1, C-2, C-3 | T-W-1, T-W-2, T-W-3, T-W-4 | M-3 | S-1 |
BTna_2A_NBI2-S-D11_K02 Student wykazuje zorientowanie w możliwości wykorzystania badań proteomicznych, w poszukiwaniu białek charakterystycznych dla danego stanu fizjologicznego lub patologicznego, mogących służyć jako markery odzwierciedlające stan organizmu. Potrafi aktywnie i sprawnie pracować w grupie i jest otwarty na supozycje innych członków zespołu. Jest otwarty na poszukiwanie wiedzy i rozwijanie własnej osobowości. | BTna_2A_K01, BTna_2A_K02, BTna_2A_K05 | — | — | C-7, C-8, C-9 | T-L-5, T-L-6, T-L-7, T-L-8, T-L-9, T-L-10, T-L-11, T-W-8, T-W-9, T-W-10, T-W-11, T-W-12 | M-6, M-7, M-8, M-9, M-10, M-11 | S-3, S-4 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
BTna_2A_NBI2-S-D11_W01 W zakresie wiedzy student objaśnia zagadnienia z zakresu analizy sekwencji genomowych. Potrafi definiować metody realizacji projektów poznawania genomów ludzi i zwierząt. | 2,0 | |
3,0 | W zakresie wiedzy student objaśnia zagadnienia z zakresu analizy sekwencji genomowych. Potrafi definiować metody realizacji projektów poznawania genomów ludzi i zwierząt. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 | ||
BTna_2A_NBI2-S-D11_W02 W wyniku przeprowadzonych zajeć student potrafi wymienić, techniki analityczne z zakresu badań proteomicznych i objaśnić ich zasady. Zna mechanizmy biochemicznych modyfikacji w procesach prowadzacych do syntezy białek. | 2,0 | - nie potrafi zdefiniować podstawowych pojęć - w zakresie stosunku do wiedzy wykazuje obojętność - w zakresie wyrażania wiedzy popełnia bardzo dużo błędów merytorycznych |
3,0 | - w zakresie wiedzy opanował podstawowy materiał programowy - w zakresie opanowania wiedzy przyswoił zasadnicze treści programowe - w zakresie stosunku do wiedzy wykazuje średnie zainteresowanie - w zakresie wyrażania wiedzy popełnia wiele błędów | |
3,5 | - w zakresie wiedzy opanował podstawowy materiał programowy - wykazuje zrozumienie podstawowych zagadnień - w zakresie opanowania wiedzy przyswoił zasadnicze treści programowe - w zakresie stosunku do wiedzy wykazuje średnie zainteresowanie - w zakresie wyrażania wiedzy popełnia wiele błędów | |
4,0 | - w zakresie wiedzy opanował prawie cały materiał programowy - w zakresie rozumienia wiedzy opanował poprawnie cały zakresu materiału - w zakresie opanowania wiedzy przyswoił zasadnicze treści programowe prawie dokładnie - w zakresie stosunku do wiedzy wykazuje duże zainteresowanie - w zakresie wyrażania wiedzy popełnia sporadycznie błędy | |
4,5 | - w zakresie wiedzy opanował cały materiał programowy - w zakresie rozumienia wiedzy opanował wszystkie treści programowe - w zakresie stosunku do wiedzy wykazuje duże zainteresowanie - w zakresie wyrażania wiedzy nie popełnia błędów | |
5,0 | - w zakresie wiedzy wykracza poza materiał programowy - w zakresie rozumienia wiedzy opanował wszystkie treści programowe - w zakresie stosunku do wiedzy wykazuje duże zainteresowanie i ciekawość poznawczą - w zakresie wyrażania wiedzy nie popełnia błędów |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
BTna_2A_NBI2-S-D11_U01 Student pozyskał umiejętności całościowego spojrzenia na genom, uwzględniając zarówno jego strukturę i funkcję jak i aspekty dotyczące jego ewolucji. | 2,0 | |
3,0 | Student pozyskał umiejętności całościowego spojrzenia na genom, uwzględniając zarówno jego strukturę i funkcję jak i aspekty dotyczące jego ewolucji. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 | ||
BTna_2A_NBI2-S-D11_U02 Nabył umiejętności zaplanowania odpowiednich strategii badawczych dla poznania struktury genomu, jego funkcji i ewolucji. Poznał mechanizmy oraz czynniki zmniejszających stabilność genomu. Ponadto nabył miejętność zapoznania się z bazami danych zawierającymi zdeponowane dane o sekwencjach i genomach. | 2,0 | |
3,0 | Nabył umiejętności zaplanowania odpowiednich strategii badawczych dla poznania struktury genomu, jego funkcji i ewolucji. Poznał mechanizmy oraz czynniki zmniejszających stabilność genomu. Ponadto nabył miejętność zapoznania się z bazami danych zawierającymi zdeponowane dane o sekwencjach i genomach. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 | ||
BTna_2A_NBI2-S-D11_U03 Student zna podstawowe zasady analiz z użyciem technik proteomicznych (elektroforeza 1DE, 2-DE, western-blot, spektrometria mas), a także główne strategie analiz proteomicznych. Potrafi określić jakie narzędzia są niezbedne do określenia różnic w ekspresji białek pomiedzy profilami białkowymi. Umie formułować i interpretować podstawowe procesy zachodzace w komórkach związane z biosyntezą białek. | 2,0 | Student: nie potrafi poradzić sobie samodzielnie z trudnościami mogącymi pojawić się na każdym z etapów przygotowanie zleconej pracy, nie operuje wiedzą kontekstową. |
3,0 | Student: radzi sobie, z dużą pomocą nauczyciela, z wybranymi trudnościami związanymi z procesem przygotowania zleconej pracy | |
3,5 | Student: potrafi poradzić sobie, z nieznaczną pomocą nauczyciela, z wybranymi trudnościami związanymi z procesem przygotowania zleconej pracy. | |
4,0 | Student: samodzielnie radzi sobie z podstawowymi trudnościami związanymi z procesem wykonania zleconej pracy | |
4,5 | Student: samodzielnie rozwiązuje postawione problemy i radzi sobie z trudnościami związanymi z procesem wykonania zleconej pracy | |
5,0 | Student: samodzielnie rozwiązuje postawione problemy i radzi sobie w pełni z trudnościami związanymi z procesem wykonania zleconej pracy; swobodnie porusza się w danej tematyce i prawidłowo wykorzystuje materiały źródłowe |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
BTna_2A_NBI2-S-D11_K01 Student potrafi kreowac aktywna postawę, ma zdolność do kompleksowego spojrzenia na analizowane fakty oraz widzi zagadnienia w szerszym kontekście. | 2,0 | |
3,0 | Student potrafi kreowac aktywna postawę, ma zdolność do kompleksowego spojrzenia na analizowane fakty oraz widzi zagadnienia w szerszym kontekście. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 | ||
BTna_2A_NBI2-S-D11_K02 Student wykazuje zorientowanie w możliwości wykorzystania badań proteomicznych, w poszukiwaniu białek charakterystycznych dla danego stanu fizjologicznego lub patologicznego, mogących służyć jako markery odzwierciedlające stan organizmu. Potrafi aktywnie i sprawnie pracować w grupie i jest otwarty na supozycje innych członków zespołu. Jest otwarty na poszukiwanie wiedzy i rozwijanie własnej osobowości. | 2,0 | |
3,0 | Student wykazuje w stopniu podstawowym zorientowanie w możliwości wykorzystania badań proteomicznych w szeroko rozumianej fizjjologii i aptofizjologii. Wykazuje aktywną postawę podczas pracy w grupie. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Brown T.A., Genomy, Wydawnictwo Naukowe PWN, Warszawa, 2009
- Słomski R., Analiza DNA Teoria i praktyka, Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, Poznań, 2011
- Skrzypczak W.F., Proteomika. Wybrane zagadnienia., Zapol, Szczecin, 2011
- Kraj A., Silberring J., Proteomika, EJB, Kraków, 2004, I
- Suder P., Silberring J., Spektrometria mas, UJ, Kraków, 2006, I
Literatura dodatkowa
- Charon K.M., Świtoński M., Genetyka i genomika zwierząt, Wydawnictwo Naukowe PWN, Warszawa, 2012
- Doonan T.A., Białka i peptydy, PWN, Warszawa, 2008