Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Techniki Morskiej i Transportu - Oceanotechnika (S2)

Sylabus przedmiotu Ship and Offshore Structures:

Informacje podstawowe

Kierunek studiów Oceanotechnika
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Ship and Offshore Structures
Specjalność Ship and Offshore Structural Design
Jednostka prowadząca Katedra Konstrukcji, Mechaniki i Technologii Okrętów
Nauczyciel odpowiedzialny Maciej Taczała <Maciej.Taczala@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 7,0 ECTS (formy) 7,0
Forma zaliczenia egzamin Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 40 4,00,50egzamin
projektyP2 60 3,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Good knowledge in structure mechanics. Typically students must have a Bachelor degree in Engineering, with a specialty in civil engineering, mechanical engineering , aerospace engineering, naval architecture, marine or offshore engineering or similar.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1The main objective is to give a general overview of the structural problems that must be considered at the conceptual design stage, early design stage and detailed design stage. The lecture focuses on the first principle design methods and relies on rational approaches. It surveys the various limit states that must be considered for the structural design and scantling assessment. Concerning Shipyards: The objective is the understanding of production technologies and manufacturing methods for shipbuilding industry in order to integrate production limits at the design stage (Design for production)

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Course contents This lecture includes several parts and an introduction to ship structure design and analysis is given in the lecture “Integrated design project”. 1) FUNDAMENTALS OF SHIP STRUCTURES Criterions of dimensioning, Design limit states, Rational approaches (direct calculation) of sizing (scantling) versus rules based approaches, Modern tools for modeling; Structural analysis (FEA); Optimisation, .... An important part of the course includes practical exercises (weekly). 2) ULTIMATE STRENGTH, RELIABILITITY ANALYSYS, FATIGUE, VIBRATION, OPTIMISATION - Description of the various limit states (service, ultimate, accident, ..) of the ship structure (yielding, buckling and tripping of beams, buckling and ultimate strength of plates and stiffened plates, ultimate bending moment of hull girder, fatigue (curves S-N), vibration, collision & grounding, ...). Ultimate strength of hull girder: simplified approach, curvature - bending moment curve and average stress and strain curve of the components (progressive collapse analysis, Smith method), non-linear analysis, fluid-structure interaction .... - Vibrations: theory of vibrations (basic notions); technology aspects: Cause of vibrations in ship structures; Techniques of measurement, control and prevention techniques; practical impact on design. - Structure reliability concepts (loads and strength) in calculation of structures (rule based approaches and direct calculations). - Materials (steel, aluminium, composite materials, sandwich panels, ...). - Introduction to ship structure optimization (least cost, least weight, ...). 3) SHIPYARDS & SHIP PRODUCTION - Shipyard layout (organisation, implantation, functions, shipyard types, etc.) - Planning and logistics - Economical context. - Shipyard production processes. - Main steps of shipbuilding production (sequences, material flows, etc.). - Modular construction (blocks, sections, etc.). - Main workshops in shipyards (machining, cutting, bending, forming, panel line, outfitting, straightening, etc.). - Welding and cutting processes (welding types, welding processes, welds control, weld calculation). - Launching methods (dry dock, slipway, etc.) - Modern tools for production simulation and cost assessment - Concurrent Engineering tools such as Design for Production, Lean manufacturing, Quality Management, etc. - Scheduling notions (Potential and Pert methods) 4) COMPOSITE MATERIALS (Marine application) The lecture objective is to give relevant knowledge and practical expertise to perform a ship design using composite materials. Description of mechanical performances of fibers (glass, carbon, Kevlar, bore, silicium...) and resins (Polyester, Epoxy, PUR). Comparison with metallic materials. Advantages of composite materials. Description of composites: isotropic, anisotropic, tubes and reservoirs, sandwich, multilayers, laminated. Models for composite materials. Simplified methods for properties assessment. Manufacturing methods (experimental test in lab – done by students). - Discussion on the structural responses for isotropic, orthotropic and anisotropic materials. - Structural applications of metallic and non-metallic composite structures in shipbuilding industry. - Description of elastic behaviour in composite structure. - Structural failure modes/theories translated to ship structures. - Application of the Class rules and/or FEM tools for structural design.40
40
wykłady
0

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1The course includes 5 to 6 practical works. Written works are marked.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Practical work (25%) Written examination (25%) Oral examination (50%)

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
O_2A_D4-18_U01
- The main objective is to give a general overview of the structural problems that must be considered at the conceptual design stage, early design stage and detailed design stage. The lecture focusses on the first principle design methods and relies on rational approaches. It surveys the various limit states that must be considered for the structural design and scantling assessment. - Concerning Shipyards: The objective is the understanding of production technologies and manufacturing methods for shipbuilding industry in order to integrate production limits at the design stage (Design for production)
O_2A_U13, O_2A_U18, O_2A_U19, O_2A_U25T2A_U08, T2A_U09, T2A_U10, T2A_U15, T2A_U16, T2A_U17, T2A_U18, T2A_U19InzA2_U01, InzA2_U02, InzA2_U03, InzA2_U05, InzA2_U06, InzA2_U07, InzA2_U08

Literatura podstawowa

  1. Syllabus (available at secretary's office of ANAST) See also Analysis and Design of Ship Structure, P. Rigo, Ship and construction, SNAME, vol. 1, 2003 Registered student has access to EMSHIP Intranet (LMS), where ref books are available

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Course contents This lecture includes several parts and an introduction to ship structure design and analysis is given in the lecture “Integrated design project”. 1) FUNDAMENTALS OF SHIP STRUCTURES Criterions of dimensioning, Design limit states, Rational approaches (direct calculation) of sizing (scantling) versus rules based approaches, Modern tools for modeling; Structural analysis (FEA); Optimisation, .... An important part of the course includes practical exercises (weekly). 2) ULTIMATE STRENGTH, RELIABILITITY ANALYSYS, FATIGUE, VIBRATION, OPTIMISATION - Description of the various limit states (service, ultimate, accident, ..) of the ship structure (yielding, buckling and tripping of beams, buckling and ultimate strength of plates and stiffened plates, ultimate bending moment of hull girder, fatigue (curves S-N), vibration, collision & grounding, ...). Ultimate strength of hull girder: simplified approach, curvature - bending moment curve and average stress and strain curve of the components (progressive collapse analysis, Smith method), non-linear analysis, fluid-structure interaction .... - Vibrations: theory of vibrations (basic notions); technology aspects: Cause of vibrations in ship structures; Techniques of measurement, control and prevention techniques; practical impact on design. - Structure reliability concepts (loads and strength) in calculation of structures (rule based approaches and direct calculations). - Materials (steel, aluminium, composite materials, sandwich panels, ...). - Introduction to ship structure optimization (least cost, least weight, ...). 3) SHIPYARDS & SHIP PRODUCTION - Shipyard layout (organisation, implantation, functions, shipyard types, etc.) - Planning and logistics - Economical context. - Shipyard production processes. - Main steps of shipbuilding production (sequences, material flows, etc.). - Modular construction (blocks, sections, etc.). - Main workshops in shipyards (machining, cutting, bending, forming, panel line, outfitting, straightening, etc.). - Welding and cutting processes (welding types, welding processes, welds control, weld calculation). - Launching methods (dry dock, slipway, etc.) - Modern tools for production simulation and cost assessment - Concurrent Engineering tools such as Design for Production, Lean manufacturing, Quality Management, etc. - Scheduling notions (Potential and Pert methods) 4) COMPOSITE MATERIALS (Marine application) The lecture objective is to give relevant knowledge and practical expertise to perform a ship design using composite materials. Description of mechanical performances of fibers (glass, carbon, Kevlar, bore, silicium...) and resins (Polyester, Epoxy, PUR). Comparison with metallic materials. Advantages of composite materials. Description of composites: isotropic, anisotropic, tubes and reservoirs, sandwich, multilayers, laminated. Models for composite materials. Simplified methods for properties assessment. Manufacturing methods (experimental test in lab – done by students). - Discussion on the structural responses for isotropic, orthotropic and anisotropic materials. - Structural applications of metallic and non-metallic composite structures in shipbuilding industry. - Description of elastic behaviour in composite structure. - Structural failure modes/theories translated to ship structures. - Application of the Class rules and/or FEM tools for structural design.40
40

Treści programowe - wykłady

KODTreść programowaGodziny
0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaO_2A_D4-18_U01- The main objective is to give a general overview of the structural problems that must be considered at the conceptual design stage, early design stage and detailed design stage. The lecture focusses on the first principle design methods and relies on rational approaches. It surveys the various limit states that must be considered for the structural design and scantling assessment. - Concerning Shipyards: The objective is the understanding of production technologies and manufacturing methods for shipbuilding industry in order to integrate production limits at the design stage (Design for production)
Odniesienie do efektów kształcenia dla kierunku studiówO_2A_U13potrafi dokonać analizy budowy i funkcjonowania istniejących rozwiązań technicznych obiektów oceanotechnicznych oraz ich elementów, jak również zaproponować możliwości ich ulepszenia lub modyfikacji
O_2A_U18potrafi zaprojektować procesy produkcyjne oraz procesy technologiczne obiektów oceanotechnicznych z uwzględnieniem aspektów pozatechnicznych
O_2A_U19potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych
O_2A_U25potrafi zaprojektować złożony element, układ, system, proces, urządzenie czy obiekt oceanotechniczny z uwzględnieniem zadanej specyfikacji i aspektów pozatechnicznych oraz w dostępny sposób zrealizować ten projekt – co najmniej w części – wykorzystując właściwe metody, techniki i narzędzia, w tym przystosowując do tego celu istniejące lub opracowując nowe narzędzia
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne
T2A_U10potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - integrować wiedzę z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów oraz zastosować podejście systemowe, uwzględniające także aspekty pozatechniczne
T2A_U15potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
T2A_U16potrafi zaproponować ulepszenia (usprawnienia) istniejących rozwiązań technicznych
T2A_U17potrafi dokonać identyfikacji i sformułować specyfikację złożonych zadań inżynierskich, charakterystycznych dla studiowanego kierunku studiów, w tym zadań nietypowych, uwzględniając ich aspekty pozatechniczne
T2A_U18potrafi ocenić przydatność metod i narzędzi służących do rozwiązania zadania inżynierskiego, charakterystycznego dla studiowanego kierunku studiów, w tym dostrzec ograniczenia tych metod i narzędzi; potrafi - stosując także koncepcyjnie nowe metody - rozwiązywać złożone zadania inżynierskie, charakterystyczne dla studiowanego kierunku studiów, w tym zadania nietypowe oraz zadania zawierające komponent badawczy
T2A_U19potrafi - zgodnie z zadaną specyfikacją, uwzględniającą aspekty pozatechniczne - zaprojektować złożone urządzenie, obiekt, system lub proces, związane z zakresem studiowanego kierunku studiów, oraz zrealizować ten projekt - co najmniej w części - używając właściwych metod, technik i narzędzi, w tym przystosowując do tego celu istniejące lub opracowując nowe narzędzia
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA2_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
InzA2_U03potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne
InzA2_U05potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
InzA2_U06potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów
InzA2_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
InzA2_U08potrafi - zgodnie z zadaną specyfikacją - zaprojektować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi