Pole | KOD | Znaczenie kodu |
---|
Zamierzone efekty kształcenia | O_2A_D1-04_U01 | Student posiada umiejętności poprawnego stosowania terminologii i potrafi objaśnić pojęcia dotyczące przedmiotu. Student posiada umiejętności wykonywania analizy wyników podstawowych modeli numerycznych dla przepływów (indywidualnie i w zespole), w tym rozwiązywania równań Naviera-Stokesa, przeprowadzania obliczeń i modelowania płaskiego stacjonarnego i niestacjonarnego opływu walca o przekroju kołowym cieczą lepką, analizy opływu profilu hydromechanicznego oraz przestrzennej analizy opływu elipsoidy obrotowej. |
---|
Odniesienie do efektów kształcenia dla kierunku studiów | O_2A_U05 | potrafi opracować szczegółową dokumentację wyników realizacji eksperymentu, zadania projektowego lub badawczego, jak również potrafi przygotować opracowanie zawierające omówienie tych wyników |
---|
O_2A_U15 | potrafi ocenić przydatność i możliwość wykorzystania odpowiednich metod, narzędzi i programów komputerowych służących do rozwiązania zadanego problemu inżynierskiego związanego z zagadnieniami oceanotechniki dostrzegając ich ograniczenia |
O_2A_U02 | potrafi pracować indywidualnie i w zespole; potrafi ocenić pracochłonność zadania oraz zapewnić jego realizację w założonym terminie; potrafi porozumiewać się w środowisku zawodowym i innym z wykorzystaniem różnych technik |
O_2A_U09 | potrafi wykorzystać poznane metody i modele matematyczne, uwzględniając ewentualne ich modyfikacje, do modelowania i projektowania elementów, układów, systemów, procesów, maszyn czy obiektów oceanotechnicznych przy pomocy odpowiednich narzędzi |
Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | T2A_U02 | potrafi porozumiewać się przy użyciu różnych technik w środowisku zawodowym oraz w innych środowiskach, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów |
---|
T2A_U04 | potrafi przygotować i przedstawić w języku polskim i języku obcym prezentację ustną, dotyczącą szczegółowych zagadnień z zakresu studiowanego kierunku studiów |
T2A_U07 | potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej |
T2A_U08 | potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski |
T2A_U09 | potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne |
T2A_U12 | potrafi ocenić przydatność i możliwość wykorzystania nowych osiągnięć (technik i technologii) w zakresie studiowanego kierunku studiów |
T2A_U15 | potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi |
T2A_U17 | potrafi dokonać identyfikacji i sformułować specyfikację złożonych zadań inżynierskich, charakterystycznych dla studiowanego kierunku studiów, w tym zadań nietypowych, uwzględniając ich aspekty pozatechniczne |
T2A_U18 | potrafi ocenić przydatność metod i narzędzi służących do rozwiązania zadania inżynierskiego, charakterystycznego dla studiowanego kierunku studiów, w tym dostrzec ograniczenia tych metod i narzędzi; potrafi - stosując także koncepcyjnie nowe metody - rozwiązywać złożone zadania inżynierskie, charakterystyczne dla studiowanego kierunku studiów, w tym zadania nietypowe oraz zadania zawierające komponent badawczy |
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | InzA2_U01 | potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski |
---|
InzA2_U02 | potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne |
InzA2_U03 | potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne |
InzA2_U05 | potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi |
InzA2_U06 | potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów |
InzA2_U07 | potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia |
Cel przedmiotu | C-2 | Ukształtowanie umiejętności rozwiązywania równań Naviera-Stokesa, przeprowadzania obliczeń i modelowania płaskiego stacjonarnego i niestacjonarnego opływu walca o przekroju kołowym cieczą lepką, analizy opływu profilu hydromechanicznego oraz przestrzennej analizy opływu elipsoidy obrotowej. |
---|
C-1 | Zapoznanie studentów z numeryczną mechaniką płynów, matematyczną klasyfikacją przepływów, metodami numerycznymi, metodą objętości skończonej, numerycznym rozwiązywaniem równań Naviera-Stokesa, modelowaniem skomplikowanych geometrii oraz zagadnieniami praktycznymi numerycznej mechaniki płynów i zastosowaniami w oceanotechnice, lotnictwie i przemyśle motoryzacyjnym. |
Treści programowe | T-W-7 | Zagadnienia praktyczne numerycznej mechaniki płynów, strategia obliczeń, pre- i postprocessing, zakres stosowania, błędy, możliwości rozwoju. |
---|
T-W-4 | Metoda objętości skończonej: stosowane schematy, warunki brzegowe. |
T-W-3 | Metody numeryczne, metody dyskretyzacji, siatka numeryczna, metody uzyskiwania rozwiązań, kryteria zbieżności. |
T-W-8 | Zastosowania w oceanotechnice, lotnictwie i przemyśle motoryzacyjnym. |
T-W-5 | Rozwiązywanie numeryczne równań Naviera-Stokesa, przepływy turbulentne, metoda bezpośrednia, metoda dużych wirów, równanie Reynoldsa, modelowanie tensora naprężeń turbulentnych, przepływy ściśliwe - aerodynamiczne, przepływy ze swobodną powierzchnią, przepływy niestacjonarne, interwał czasowy, warunki początkowe. |
T-L-1 | Wybrane rozwiązania analityczne równań Naviera-Stokesa: przepływ płaski pomiędzy ściankami równoległymi, przepływ płaski w kanale zbieżnym i rozbieżnym, zjawisko oderwania - rozwiązywanie przykładów praktycznych, modelowanie komputerowe. |
T-L-2 | Płaski stacjonarny i niestacjonarny opływ walca o przekroju kołowym cieczą lepką, modelowanie, analiza wyników, badanie wyników w zależności od różnych parametrów rozwiązań. |
T-L-4 | Przestrzenna analiza opływu elipsoidy obrotowej, przygotowanie siatki numerycznej, obliczenia, postprocessing, obliczenia ze swobodną powierzchnią. |
T-L-3 | Analiza opływu profilu hydromechanicznego, numeryczne wyznaczanie współczynników siły nośnej i oporu, rozkład współczynnika ciśnienia. |
Metody nauczania | M-3 | Ćwiczenia laboratoryjne. |
---|
M-2 | Dyskusja dydaktyczna związana z wykładem. |
M-4 | Metody programowane z wykorzystaniem komputera. |
Sposób oceny | S-4 | Ocena podsumowująca: Zaliczenie pisemne i ustne. |
---|
S-3 | Ocena formująca: Ocena pracy własnej studenta i pracy w grupie. |
S-2 | Ocena formująca: Ocena prac kontrolnych i sprawozdań z ćwiczeń laboratoryjnych. |
S-1 | Ocena formująca: Ocena prowadzenia dyskusji i aktywności. |
Kryteria oceny | Ocena | Kryterium oceny |
---|
2,0 | Student nie potrafi samodzielnie wykorzystać programów komputerowych i przeprowadzić obliczeń i analiz oraz przygotować prac kontrolnych, w których przedstawione zostaną wyniki z przeprowadzonych obliczeń i analiz |
3,0 | Student potrafi samodzielnie wykorzystać programy komputerowe i przeprowadzić obliczenia i analizy oraz przygotować prace kontrolne, w których potrafi przedstawić wyniki z przeprowadzonych obliczeń i analiz |
3,5 | Student potrafi samodzielnie wykorzystać programy komputerowe i przeprowadzić obliczenia i analizy oraz przygotować prace kontrolne, w których potrafi przedstawić wyniki z przeprowadzonych obliczeń i analiz wraz z prezentacją wniosków |
4,0 | Student potrafi samodzielnie wykorzystać programy komputerowe i przeprowadzić obliczenia i analizy oraz przygotować prace kontrolne, w których potrafi przedstawić wyniki z przeprowadzonych obliczeń i analiz wraz z prezentacją wniosków i analizą przyjętych założeń |
4,5 | Student potrafi samodzielnie wykorzystać programy komputerowe i przeprowadzić obliczenia i analizy oraz przygotować prace kontrolne, w których potrafi przedstawić wyniki z przeprowadzonych obliczeń i analiz wraz z prezentacją wniosków i analizą przyjętych założeń; ponadto student potrafi analizować oraz dyskutować o wynikach z przeprowadzonych obliczeń i analiz |
5,0 | Student potrafi samodzielnie wykorzystać programy komputerowe i przeprowadzić obliczenia i analizy oraz przygotować prace kontrolne, w których potrafi przedstawić wyniki z przeprowadzonych obliczeń i analiz wraz z prezentacją wniosków i analizą przyjętych założeń; ponadto student potrafi analizować oraz dyskutować o wynikach z przeprowadzonych obliczeń i analiz, a także zaproponować krytyczną ich interpretację oraz propozycję modyfikacji rozwiązań |