Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Techniki Morskiej i Transportu - Oceanotechnika (N2)
specjalność: Projektowanie i budowa systemów energetycznych

Sylabus przedmiotu Prototypowanie wirtualne w oceanotechnice:

Informacje podstawowe

Kierunek studiów Oceanotechnika
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł Przedmiot obieralny 3
Przedmiot Prototypowanie wirtualne w oceanotechnice
Specjalność przedmiot wspólny
Jednostka prowadząca Zakład Projektowania Jachtów i Statków
Nauczyciel odpowiedzialny Tomasz Abramowski <Tomasz.Abramowski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia egzamin Język polski
Blok obieralny 5 Grupa obieralna 3

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW4 15 1,50,50egzamin
ćwiczenia audytoryjneA4 15 1,50,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Wiadomości z matematyki i fizyki w zakresie inżynierskich studiów pierwszego stopnia.
W-2Wiadomości z oceanologii i inżynierii oceanu.
W-3Podstawowa wiedza w zakresie CAD/CAM/CAE.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z zagadnieniami dotyczącymi porównania metody projektowania wirtualnego i metody tradycyjnej oraz komputerowego wspomagania projektowania i projektowania wirtualnego, sztucznej inteligencji w projektowaniu i testowaniu produktu, symulacji cech kinematycznych i dynamicznych projektowanego obiektu, wirtualnej rzeczywistości, podstaw programowego tworzenia prezentacji VR oraz systemów VR stosowanych w oceanotechnice.
C-2Ukształtowanie umiejętności rozwiązywania zadań (indywidualnie i w zespole) w zakresie zagadnień poruszanych na wykładach, związanych m.in. z tworzeniem i testowaniem przykładowych elementów statku w VR przy pomocy standardów vrml i x3d oraz tworzeniem symulacji kinematycznych i dynamicznych przykładowych urządzeń okrętowych i symulacji dynamiki statku.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Tworzenie i testowanie przykładowych elementów statku w VR przy pomocy standardów vrml i x3d.6
T-A-2Tworzenie symulacji kinematycznych i dynamicznych przykładowych urządzeń okrętowych i symulacja dynamiki statku.7
T-A-3Zaliczenie.2
15
wykłady
T-W-1Podstawowe elementy procesu budowy prototypu, porównanie metody projektowania wirtualnego i metody tradycyjnej.2
T-W-2Wspomagania komputerowe projektowania a projektowanie wirtualne.2
T-W-3Integracja informatyczna, sztuczna inteligencja w projektowaniu i testowaniu produktu.2
T-W-4Symulacja cech kinematycznych i dynamicznych projektowanego obiektu, ergonomia i analiza ergonomii, środowisko i oddziaływanie.2
T-W-5Wirtualna rzeczywistość. Reprezentacja obrazu i opis matematyczny środowiska 3D, imersja, techniki estymacji ruchu, metody rozpoznawania, symulacja zmysłów, podstawowe techniki sprzętowe i programowe wirtualnej rzeczywistości, projektory wirtualne, hełm, rękawice.2
T-W-6Podstawy programowego tworzenia prezentacji VR, język VRML i X3D, struktura języków, elementy, tworzenie wirtualnych aplikacji, przeglądarki internetowe VR, konwersja obiektów 3D utworzonych w systemach CAD do postaci vrml i x3d.2
T-W-7Systemy VR w oceanotechnice, symulatory manewrowe, wirtualne projektowanie systemów statków - przykłady zastosowań.3
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach i zaliczeniu.15
A-A-2Konsultacje.3
A-A-3Przygotowanie opracowań.10
A-A-4Przygotowanie do zaliczenia.9
37
wykłady
A-W-1Uczestnictwo w zajęciach.15
A-W-2Konsultacje.5
A-W-3Przygotowanie do egzaminu.15
A-W-4Uczestnictwo w egzaminie.2
37

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny i wykład problemowy.
M-2Dyskusja dydaktyczna związana z wykładem i ćwiczeniami.
M-3Metody eksponujące z wykorzystaniem filmu i prezentacji.
M-4Ćwiczenia przedmiotowe.
M-5Metody programowane z wykorzystaniem komputera.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena prowadzenia dyskusji i aktywności.
S-2Ocena formująca: Ocena pracy własnej studenta i pracy w grupie.
S-3Ocena podsumowująca: Zaliczenie pisemne i ustne.
S-4Ocena podsumowująca: Egzamin pisemny i ustny.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
O_2A_O03-2_W01
Student zna i prawidłowo dobiera terminologię dotyczącą przedmiotu oraz potrafi objaśnić pojęcia podstawowe. Student zna i potrafi omówić zagadnienia dotyczące porównania metody projektowania wirtualnego i metody tradycyjnej oraz komputerowego wspomagania projektowania i projektowania wirtualnego, sztucznej inteligencji w projektowaniu i testowaniu produktu, symulacji cech kinematycznych i dynamicznych projektowanego obiektu, wirtualnej rzeczywistości, podstaw programowego tworzenia prezentacji VR oraz systemów VR stosowanych w projektowaniu obiektów oceanotechnicznych.
O_2A_W15, O_2A_W13, O_2A_W04T2A_W01, T2A_W02, T2A_W03, T2A_W04, T2A_W07, T2A_W08InzA2_W02, InzA2_W03, InzA2_W05C-1T-W-1, T-W-2, T-W-3, T-W-4, T-W-6, T-W-5, T-W-7M-1, M-2, M-3S-4, S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
O_2A_O03-2_U01
Student posiada umiejętności poprawnego stosowania terminologii i potrafi objaśnić pojęcia dotyczące przedmiotu. Student posiada umiejętności rozwiązywania zadań (indywidualnie i w zespole) w zakresie zagadnień poruszanych na wykładach, związanych m.in. z tworzeniem i testowaniem przykładowych elementów statku w VR przy pomocy standardów vrml i x3d oraz tworzeniem symulacji kinematycznych i dynamicznych przykładowych urządzeń okrętowych i symulacji dynamiki statku.
O_2A_U10, O_2A_U17, O_2A_U14, O_2A_U02, O_2A_U19T2A_U02, T2A_U08, T2A_U09, T2A_U10, T2A_U11, T2A_U12, T2A_U15, T2A_U17, T2A_U18InzA2_U01, InzA2_U02, InzA2_U03, InzA2_U05, InzA2_U06, InzA2_U07C-2, C-1T-W-2, T-W-4, T-W-7, T-A-1, T-A-2M-1, M-2, M-5, M-4S-1, S-2, S-3

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
O_2A_O03-2_K01
Student poprzez identyfikację zagadnień i problemów dotyczących tematów poruszanych na zajęciach ma świadomość i rozumie wpływ działalności inżynierskiej na środowisko oraz związaną z tym odpowiedzialność, zna i rozumie zagrożenia występujące w procesach wzajemnego oddziaływania środowiska morskiego i obiektów oceanotechnicznych, jak również potrafi współpracować i realizować zadania w grupie.
O_2A_K04, O_2A_K02, O_2A_K05, O_2A_K03T2A_K02, T2A_K03, T2A_K04InzA2_K01, InzA2_K02C-2, C-1T-W-1, T-W-4, T-W-7, T-A-1, T-A-2M-1, M-2, M-5, M-4S-1, S-2, S-3

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
O_2A_O03-2_W01
Student zna i prawidłowo dobiera terminologię dotyczącą przedmiotu oraz potrafi objaśnić pojęcia podstawowe. Student zna i potrafi omówić zagadnienia dotyczące porównania metody projektowania wirtualnego i metody tradycyjnej oraz komputerowego wspomagania projektowania i projektowania wirtualnego, sztucznej inteligencji w projektowaniu i testowaniu produktu, symulacji cech kinematycznych i dynamicznych projektowanego obiektu, wirtualnej rzeczywistości, podstaw programowego tworzenia prezentacji VR oraz systemów VR stosowanych w projektowaniu obiektów oceanotechnicznych.
2,0Student nie posiada podstawowej wiedzy w zakresie przedmiotu, nie potrafi podać definicji pojęć i zagadnień omawianych na zajęciach
3,0Student posiada podstawową wiedzę w zakresie przedmiotu, potrafi podać definicje pojęć i zagadnień omawianych na zajęciach
3,5Student posiada wiedzę w zakresie przedmiotu, potrafi podać i objaśnić definicje pojęć i zagadnień omawianych na zajęciach
4,0Student posiada wiedzę w zakresie przedmiotu, potrafi podać i objaśnić definicje pojęć i zagadnień omawianych na zajęciach, jak również potrafi omówić zakresy ich stosowania
4,5Student posiada wiedzę w zakresie przedmiotu, potrafi podać i objaśnić definicje pojęć i zagadnień omawianych na zajęciach, jak również potrafi omówić zakresy ich stosowania oraz efektywność wykorzystania i wpływ na środowisko
5,0Student posiada wiedzę w zakresie przedmiotu, potrafi podać i objaśnić definicje pojęć i zagadnień omawianych na zajęciach, jak również potrafi omówić zakresy ich stosowania, efektywność wykorzystania i wpływ na środowisko, a także samodzielnie identyfikować narzędzia potrzebne do rozwiązania zadanego problemu z jednoczesnym uzasadnieniem wyboru

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
O_2A_O03-2_U01
Student posiada umiejętności poprawnego stosowania terminologii i potrafi objaśnić pojęcia dotyczące przedmiotu. Student posiada umiejętności rozwiązywania zadań (indywidualnie i w zespole) w zakresie zagadnień poruszanych na wykładach, związanych m.in. z tworzeniem i testowaniem przykładowych elementów statku w VR przy pomocy standardów vrml i x3d oraz tworzeniem symulacji kinematycznych i dynamicznych przykładowych urządzeń okrętowych i symulacji dynamiki statku.
2,0Student nie potrafi samodzielnie i w zespole przeprowadzić symulacji i przedstawić rozwiązania zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji
3,0Student potrafi samodzielnie i w zespole przeprowadzić symulacje i przedstawić rozwiązanie zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji
3,5Student potrafi samodzielnie i w zespole przeprowadzić symulacje i przedstawić rozwiązanie zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji wraz z prezentacją wniosków
4,0Student potrafi samodzielnie i w zespole przeprowadzić symulacje i przedstawić rozwiązanie zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji wraz z prezentacją wniosków i analizą przyjętych założeń
4,5Student potrafi samodzielnie i w zespole przeprowadzić symulacje i przedstawić rozwiązanie zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji wraz z prezentacją wniosków i analizą przyjętych założeń; ponadto student potrafi analizować oraz dyskutować o wynikach z przeprowadzonych symulacji
5,0Student potrafi samodzielnie i w zespole przeprowadzić symulacje i przedstawić rozwiązanie zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji wraz z prezentacją wniosków i analizą przyjętych założeń; ponadto student potrafi analizować oraz dyskutować o wynikach z przeprowadzonych symulacji, a także zaproponować krytyczną ich interpretację oraz propozycję modyfikacji rozwiązań

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
O_2A_O03-2_K01
Student poprzez identyfikację zagadnień i problemów dotyczących tematów poruszanych na zajęciach ma świadomość i rozumie wpływ działalności inżynierskiej na środowisko oraz związaną z tym odpowiedzialność, zna i rozumie zagrożenia występujące w procesach wzajemnego oddziaływania środowiska morskiego i obiektów oceanotechnicznych, jak również potrafi współpracować i realizować zadania w grupie.
2,0Student nie rozumie wpływu działalności inżynierskiej na środowisko i odpowiedzialności za podejmowane decyzje oraz zagrożeń występujących w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również nie potrafi pracować w grupie
3,0Student ma podstawową świadomość wpływu działalności inżynierskiej na środowisko i odpowiedzialności za podejmowane decyzje oraz zagrożeń występujących w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również potrafi pracować w grupie
3,5Student ma świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również potrafi pracować w grupie
4,0Student ma pełną świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również potrafi współdziałać i pracować w grupie
4,5Student ma pełną świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również potrafi współdziałać i pracować w grupie; ponadto potrafi przekazywać informacje i opinie na tematy poruszane na zajęciach z uwzględnieniem różnych punktów widzenia
5,0Student ma pełną świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również potrafi współdziałać i pracować w grupie; ponadto potrafi przekazywać informacje i opinie na tematy poruszane na zajęciach z uwzględnieniem różnych punktów widzenia oraz własnej oceny

Literatura podstawowa

  1. Dąbkowski K., VRML 97. Trzeci wymiar Sieci, Wydawnictwo Mikom, Warszawa, 1998
  2. Ladd E., O'Donell J., HTML4, DHTML, VRML, XML, Wydawnictwo Lynx-SFT, Warszawa, 2004
  3. Rix J., Virtual Prototyping, Kluver Academic Publishers, London, 2002

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Tworzenie i testowanie przykładowych elementów statku w VR przy pomocy standardów vrml i x3d.6
T-A-2Tworzenie symulacji kinematycznych i dynamicznych przykładowych urządzeń okrętowych i symulacja dynamiki statku.7
T-A-3Zaliczenie.2
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe elementy procesu budowy prototypu, porównanie metody projektowania wirtualnego i metody tradycyjnej.2
T-W-2Wspomagania komputerowe projektowania a projektowanie wirtualne.2
T-W-3Integracja informatyczna, sztuczna inteligencja w projektowaniu i testowaniu produktu.2
T-W-4Symulacja cech kinematycznych i dynamicznych projektowanego obiektu, ergonomia i analiza ergonomii, środowisko i oddziaływanie.2
T-W-5Wirtualna rzeczywistość. Reprezentacja obrazu i opis matematyczny środowiska 3D, imersja, techniki estymacji ruchu, metody rozpoznawania, symulacja zmysłów, podstawowe techniki sprzętowe i programowe wirtualnej rzeczywistości, projektory wirtualne, hełm, rękawice.2
T-W-6Podstawy programowego tworzenia prezentacji VR, język VRML i X3D, struktura języków, elementy, tworzenie wirtualnych aplikacji, przeglądarki internetowe VR, konwersja obiektów 3D utworzonych w systemach CAD do postaci vrml i x3d.2
T-W-7Systemy VR w oceanotechnice, symulatory manewrowe, wirtualne projektowanie systemów statków - przykłady zastosowań.3
15

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach i zaliczeniu.15
A-A-2Konsultacje.3
A-A-3Przygotowanie opracowań.10
A-A-4Przygotowanie do zaliczenia.9
37
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach.15
A-W-2Konsultacje.5
A-W-3Przygotowanie do egzaminu.15
A-W-4Uczestnictwo w egzaminie.2
37
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaO_2A_O03-2_W01Student zna i prawidłowo dobiera terminologię dotyczącą przedmiotu oraz potrafi objaśnić pojęcia podstawowe. Student zna i potrafi omówić zagadnienia dotyczące porównania metody projektowania wirtualnego i metody tradycyjnej oraz komputerowego wspomagania projektowania i projektowania wirtualnego, sztucznej inteligencji w projektowaniu i testowaniu produktu, symulacji cech kinematycznych i dynamicznych projektowanego obiektu, wirtualnej rzeczywistości, podstaw programowego tworzenia prezentacji VR oraz systemów VR stosowanych w projektowaniu obiektów oceanotechnicznych.
Odniesienie do efektów kształcenia dla kierunku studiówO_2A_W15ma uporządkowaną i pogłębioną wiedzę w zakresie mechaniki konstrukcji i technologii budowy obiektów oceanotechnicznych
O_2A_W13ma uporządkowaną i pogłębioną wiedzę w zakresie projektowania i eksploatacji statków i obiektów oceanotechnicznych
O_2A_W04zna i rozumie zasady wzajemnego oddziaływania środowiska morskiego i obiektów oceanotechnicznych, jak również aspekty ochrony środowiska
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W01ma rozszerzoną i pogłębioną wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania złożonych zadań z zakresu studiowanego kierunku studiów
T2A_W02ma szczegółową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T2A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T2A_W04ma podbudowaną teoretycznie szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
T2A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu złożonych zadań inżynierskich z zakresu studiowanego kierunku studiów
T2A_W08ma wiedzę niezbędną do rozumienia społecznych, ekonomicznych, prawnych i innych pozatechnicznych uwarunkowań działalności inżynierskiej oraz ich uwzględniania w praktyce inżynierskiej
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
InzA2_W03ma podstawową wiedzę niezbędną do rozumienia społecznych, ekonomicznych, prawnych i innych uwarunkowań działalności inżynierskiej
InzA2_W05zna typowe technologie inżynierskie w zakresie studiowanego kierunku studiów
Cel przedmiotuC-1Zapoznanie studentów z zagadnieniami dotyczącymi porównania metody projektowania wirtualnego i metody tradycyjnej oraz komputerowego wspomagania projektowania i projektowania wirtualnego, sztucznej inteligencji w projektowaniu i testowaniu produktu, symulacji cech kinematycznych i dynamicznych projektowanego obiektu, wirtualnej rzeczywistości, podstaw programowego tworzenia prezentacji VR oraz systemów VR stosowanych w oceanotechnice.
Treści programoweT-W-1Podstawowe elementy procesu budowy prototypu, porównanie metody projektowania wirtualnego i metody tradycyjnej.
T-W-2Wspomagania komputerowe projektowania a projektowanie wirtualne.
T-W-3Integracja informatyczna, sztuczna inteligencja w projektowaniu i testowaniu produktu.
T-W-4Symulacja cech kinematycznych i dynamicznych projektowanego obiektu, ergonomia i analiza ergonomii, środowisko i oddziaływanie.
T-W-6Podstawy programowego tworzenia prezentacji VR, język VRML i X3D, struktura języków, elementy, tworzenie wirtualnych aplikacji, przeglądarki internetowe VR, konwersja obiektów 3D utworzonych w systemach CAD do postaci vrml i x3d.
T-W-5Wirtualna rzeczywistość. Reprezentacja obrazu i opis matematyczny środowiska 3D, imersja, techniki estymacji ruchu, metody rozpoznawania, symulacja zmysłów, podstawowe techniki sprzętowe i programowe wirtualnej rzeczywistości, projektory wirtualne, hełm, rękawice.
T-W-7Systemy VR w oceanotechnice, symulatory manewrowe, wirtualne projektowanie systemów statków - przykłady zastosowań.
Metody nauczaniaM-1Wykład informacyjny i wykład problemowy.
M-2Dyskusja dydaktyczna związana z wykładem i ćwiczeniami.
M-3Metody eksponujące z wykorzystaniem filmu i prezentacji.
Sposób ocenyS-4Ocena podsumowująca: Egzamin pisemny i ustny.
S-1Ocena formująca: Ocena prowadzenia dyskusji i aktywności.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie posiada podstawowej wiedzy w zakresie przedmiotu, nie potrafi podać definicji pojęć i zagadnień omawianych na zajęciach
3,0Student posiada podstawową wiedzę w zakresie przedmiotu, potrafi podać definicje pojęć i zagadnień omawianych na zajęciach
3,5Student posiada wiedzę w zakresie przedmiotu, potrafi podać i objaśnić definicje pojęć i zagadnień omawianych na zajęciach
4,0Student posiada wiedzę w zakresie przedmiotu, potrafi podać i objaśnić definicje pojęć i zagadnień omawianych na zajęciach, jak również potrafi omówić zakresy ich stosowania
4,5Student posiada wiedzę w zakresie przedmiotu, potrafi podać i objaśnić definicje pojęć i zagadnień omawianych na zajęciach, jak również potrafi omówić zakresy ich stosowania oraz efektywność wykorzystania i wpływ na środowisko
5,0Student posiada wiedzę w zakresie przedmiotu, potrafi podać i objaśnić definicje pojęć i zagadnień omawianych na zajęciach, jak również potrafi omówić zakresy ich stosowania, efektywność wykorzystania i wpływ na środowisko, a także samodzielnie identyfikować narzędzia potrzebne do rozwiązania zadanego problemu z jednoczesnym uzasadnieniem wyboru
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaO_2A_O03-2_U01Student posiada umiejętności poprawnego stosowania terminologii i potrafi objaśnić pojęcia dotyczące przedmiotu. Student posiada umiejętności rozwiązywania zadań (indywidualnie i w zespole) w zakresie zagadnień poruszanych na wykładach, związanych m.in. z tworzeniem i testowaniem przykładowych elementów statku w VR przy pomocy standardów vrml i x3d oraz tworzeniem symulacji kinematycznych i dynamicznych przykładowych urządzeń okrętowych i symulacji dynamiki statku.
Odniesienie do efektów kształcenia dla kierunku studiówO_2A_U10potrafi – przy formułowaniu i rozwiązywaniu zadań inżynierskich i prostych problemów badawczych – dokonać oceny i zastosować odpowiednie metody analityczne, symulacyjne i eksperymentalne z zastosowaniem podejścia systemowego, jak również formułować i testować hipotezy związane m.in. z modelowaniem i projektowaniem elementów, układów, systemów, procesów, maszyn czy obiektów oceanotechnicznych
O_2A_U17potrafi określić parametry eksploatacyjne jednostek pływających oraz dokonać oceny zachowania się obiektów pływających w określonych warunkach zewnętrznych, jak i wpływu otoczenia na obiekty oceanotechniczne
O_2A_U14potrafi ocenić przydatność i możliwość wykorzystania nowych osiągnięć nauki i techniki do rozwiązania zadanego problemu inżynierskiego związanego z zagadnieniami oceanotechniki z uwzględnieniem podejścia systemowego
O_2A_U02potrafi pracować indywidualnie i w zespole; potrafi ocenić pracochłonność zadania oraz zapewnić jego realizację w założonym terminie; potrafi porozumiewać się w środowisku zawodowym i innym z wykorzystaniem różnych technik
O_2A_U19potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U02potrafi porozumiewać się przy użyciu różnych technik w środowisku zawodowym oraz w innych środowiskach, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów
T2A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne
T2A_U10potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - integrować wiedzę z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów oraz zastosować podejście systemowe, uwzględniające także aspekty pozatechniczne
T2A_U11potrafi formułować i testować hipotezy związane z problemami inżynierskimi i prostymi problemami badawczymi
T2A_U12potrafi ocenić przydatność i możliwość wykorzystania nowych osiągnięć (technik i technologii) w zakresie studiowanego kierunku studiów
T2A_U15potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
T2A_U17potrafi dokonać identyfikacji i sformułować specyfikację złożonych zadań inżynierskich, charakterystycznych dla studiowanego kierunku studiów, w tym zadań nietypowych, uwzględniając ich aspekty pozatechniczne
T2A_U18potrafi ocenić przydatność metod i narzędzi służących do rozwiązania zadania inżynierskiego, charakterystycznego dla studiowanego kierunku studiów, w tym dostrzec ograniczenia tych metod i narzędzi; potrafi - stosując także koncepcyjnie nowe metody - rozwiązywać złożone zadania inżynierskie, charakterystyczne dla studiowanego kierunku studiów, w tym zadania nietypowe oraz zadania zawierające komponent badawczy
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA2_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
InzA2_U03potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne
InzA2_U05potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
InzA2_U06potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów
InzA2_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
Cel przedmiotuC-2Ukształtowanie umiejętności rozwiązywania zadań (indywidualnie i w zespole) w zakresie zagadnień poruszanych na wykładach, związanych m.in. z tworzeniem i testowaniem przykładowych elementów statku w VR przy pomocy standardów vrml i x3d oraz tworzeniem symulacji kinematycznych i dynamicznych przykładowych urządzeń okrętowych i symulacji dynamiki statku.
C-1Zapoznanie studentów z zagadnieniami dotyczącymi porównania metody projektowania wirtualnego i metody tradycyjnej oraz komputerowego wspomagania projektowania i projektowania wirtualnego, sztucznej inteligencji w projektowaniu i testowaniu produktu, symulacji cech kinematycznych i dynamicznych projektowanego obiektu, wirtualnej rzeczywistości, podstaw programowego tworzenia prezentacji VR oraz systemów VR stosowanych w oceanotechnice.
Treści programoweT-W-2Wspomagania komputerowe projektowania a projektowanie wirtualne.
T-W-4Symulacja cech kinematycznych i dynamicznych projektowanego obiektu, ergonomia i analiza ergonomii, środowisko i oddziaływanie.
T-W-7Systemy VR w oceanotechnice, symulatory manewrowe, wirtualne projektowanie systemów statków - przykłady zastosowań.
T-A-1Tworzenie i testowanie przykładowych elementów statku w VR przy pomocy standardów vrml i x3d.
T-A-2Tworzenie symulacji kinematycznych i dynamicznych przykładowych urządzeń okrętowych i symulacja dynamiki statku.
Metody nauczaniaM-1Wykład informacyjny i wykład problemowy.
M-2Dyskusja dydaktyczna związana z wykładem i ćwiczeniami.
M-5Metody programowane z wykorzystaniem komputera.
M-4Ćwiczenia przedmiotowe.
Sposób ocenyS-1Ocena formująca: Ocena prowadzenia dyskusji i aktywności.
S-2Ocena formująca: Ocena pracy własnej studenta i pracy w grupie.
S-3Ocena podsumowująca: Zaliczenie pisemne i ustne.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi samodzielnie i w zespole przeprowadzić symulacji i przedstawić rozwiązania zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji
3,0Student potrafi samodzielnie i w zespole przeprowadzić symulacje i przedstawić rozwiązanie zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji
3,5Student potrafi samodzielnie i w zespole przeprowadzić symulacje i przedstawić rozwiązanie zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji wraz z prezentacją wniosków
4,0Student potrafi samodzielnie i w zespole przeprowadzić symulacje i przedstawić rozwiązanie zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji wraz z prezentacją wniosków i analizą przyjętych założeń
4,5Student potrafi samodzielnie i w zespole przeprowadzić symulacje i przedstawić rozwiązanie zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji wraz z prezentacją wniosków i analizą przyjętych założeń; ponadto student potrafi analizować oraz dyskutować o wynikach z przeprowadzonych symulacji
5,0Student potrafi samodzielnie i w zespole przeprowadzić symulacje i przedstawić rozwiązanie zadania, w którym zestawione zostaną wyniki z przeprowadzonych symulacji wraz z prezentacją wniosków i analizą przyjętych założeń; ponadto student potrafi analizować oraz dyskutować o wynikach z przeprowadzonych symulacji, a także zaproponować krytyczną ich interpretację oraz propozycję modyfikacji rozwiązań
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaO_2A_O03-2_K01Student poprzez identyfikację zagadnień i problemów dotyczących tematów poruszanych na zajęciach ma świadomość i rozumie wpływ działalności inżynierskiej na środowisko oraz związaną z tym odpowiedzialność, zna i rozumie zagrożenia występujące w procesach wzajemnego oddziaływania środowiska morskiego i obiektów oceanotechnicznych, jak również potrafi współpracować i realizować zadania w grupie.
Odniesienie do efektów kształcenia dla kierunku studiówO_2A_K04rozumie konieczność działań zespołowych i potrafi brać odpowiedzialność za wyniki wspólnych działań
O_2A_K02ma świadomość wpływu działalności inżynierskiej na otoczenie i środowisko oraz rozumie związaną z tym odpowiedzialność za podejmowane decyzje, w szczególności w odniesieniu do bezpieczeństwa własnego i innych osób oraz ochrony środowiska
O_2A_K05potrafi dokonać analizy zadań przydzielonych do realizacji, określając odpowiednie priorytety pozwalające na możliwie efektywne wykonanie tych zadań
O_2A_K03potrafi współpracować i realizować zadania w grupie oraz ma świadomość konieczności odpowiedniego podziału obowiązków
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_K02ma świadomość ważności i zrozumienie pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
T2A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
T2A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_K01ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
InzA2_K02potrafi myśleć i działać w sposób przedsiębiorczy
Cel przedmiotuC-2Ukształtowanie umiejętności rozwiązywania zadań (indywidualnie i w zespole) w zakresie zagadnień poruszanych na wykładach, związanych m.in. z tworzeniem i testowaniem przykładowych elementów statku w VR przy pomocy standardów vrml i x3d oraz tworzeniem symulacji kinematycznych i dynamicznych przykładowych urządzeń okrętowych i symulacji dynamiki statku.
C-1Zapoznanie studentów z zagadnieniami dotyczącymi porównania metody projektowania wirtualnego i metody tradycyjnej oraz komputerowego wspomagania projektowania i projektowania wirtualnego, sztucznej inteligencji w projektowaniu i testowaniu produktu, symulacji cech kinematycznych i dynamicznych projektowanego obiektu, wirtualnej rzeczywistości, podstaw programowego tworzenia prezentacji VR oraz systemów VR stosowanych w oceanotechnice.
Treści programoweT-W-1Podstawowe elementy procesu budowy prototypu, porównanie metody projektowania wirtualnego i metody tradycyjnej.
T-W-4Symulacja cech kinematycznych i dynamicznych projektowanego obiektu, ergonomia i analiza ergonomii, środowisko i oddziaływanie.
T-W-7Systemy VR w oceanotechnice, symulatory manewrowe, wirtualne projektowanie systemów statków - przykłady zastosowań.
T-A-1Tworzenie i testowanie przykładowych elementów statku w VR przy pomocy standardów vrml i x3d.
T-A-2Tworzenie symulacji kinematycznych i dynamicznych przykładowych urządzeń okrętowych i symulacja dynamiki statku.
Metody nauczaniaM-1Wykład informacyjny i wykład problemowy.
M-2Dyskusja dydaktyczna związana z wykładem i ćwiczeniami.
M-5Metody programowane z wykorzystaniem komputera.
M-4Ćwiczenia przedmiotowe.
Sposób ocenyS-1Ocena formująca: Ocena prowadzenia dyskusji i aktywności.
S-2Ocena formująca: Ocena pracy własnej studenta i pracy w grupie.
S-3Ocena podsumowująca: Zaliczenie pisemne i ustne.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie rozumie wpływu działalności inżynierskiej na środowisko i odpowiedzialności za podejmowane decyzje oraz zagrożeń występujących w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również nie potrafi pracować w grupie
3,0Student ma podstawową świadomość wpływu działalności inżynierskiej na środowisko i odpowiedzialności za podejmowane decyzje oraz zagrożeń występujących w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również potrafi pracować w grupie
3,5Student ma świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również potrafi pracować w grupie
4,0Student ma pełną świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również potrafi współdziałać i pracować w grupie
4,5Student ma pełną świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również potrafi współdziałać i pracować w grupie; ponadto potrafi przekazywać informacje i opinie na tematy poruszane na zajęciach z uwzględnieniem różnych punktów widzenia
5,0Student ma pełną świadomość i rozumie wpływ działalności inżynierskiej na środowisko i odpowiedzialność za podejmowane decyzje oraz zagrożenia występujące w procesach wzajemnego oddziaływania środowiska morskiego i obiektów offshore, jak również potrafi współdziałać i pracować w grupie; ponadto potrafi przekazywać informacje i opinie na tematy poruszane na zajęciach z uwzględnieniem różnych punktów widzenia oraz własnej oceny