Pole | KOD | Znaczenie kodu |
---|
Zamierzone efekty kształcenia | IM_2A_B04-2_U01 | Student umie opisać typowe metody sztucznej inteligencji, zdefiniować strukturę sterownika rozmytego, zbudować bazę reguł lingwistycznych oraz przeprowadzić badania symulacyjne. Student zdobędzie umiejętność analizowania problemu, wykonania eksperymentów i interpretacji wyników. |
---|
Odniesienie do efektów kształcenia dla kierunku studiów | IM_2A_U02 | Potrafi pracować indywidualnie i w zespole w sposób zapewniający realizację zadania w założonym terminie; potrafi ocenić czasochłonność zadania i jego aspekty ekonomiczne |
---|
IM_2A_U01 | Potrafi pozyskiwać informacje z literatury, baz danych i innych źródeł; także w języku obcym; potrafi integrować uzyskane informacje, dokonywać ich interpretacji i krytycznej oceny, a także wyciągnąć wnioski oraz formułować i wyczerpująco uzasadniać opinie |
Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | T2A_U01 | potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji i krytycznej oceny, a także wyciągać wnioski oraz formułować i wyczerpująco uzasadniać opinie |
---|
T2A_U02 | potrafi porozumiewać się przy użyciu różnych technik w środowisku zawodowym oraz w innych środowiskach, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów |
T2A_U04 | potrafi przygotować i przedstawić w języku polskim i języku obcym prezentację ustną, dotyczącą szczegółowych zagadnień z zakresu studiowanego kierunku studiów |
T2A_U07 | potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej |
T2A_U09 | potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne |
T2A_U10 | potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - integrować wiedzę z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów oraz zastosować podejście systemowe, uwzględniające także aspekty pozatechniczne |
Cel przedmiotu | C-2 | Zdobycie umiejętności praktycznej analizy szerokiego spektrum problemów rozwiązywanych metodami sztucznej inteligencji. Zaznajomienie z możliwościami dostępnych na rynku aplikacji sztucznej inteligencji wykorzystywanych w zadaniach demonstracyjnych i praktycznych. |
---|
Treści programowe | T-L-1 | Rozważanie różnych problemów logicznych i formalne prezentowanie problemu przygotowujące do zastosowania metod przeszukiwania grafów i drzew. |
---|
T-L-2 | Wykorzystanie modelu wnioskowania rozmytego do analizy wpływu postaci bazy reguł lingwistycznych na wynik wnioskowania. Modelowanie systemów wnioskowania rozmytego z zastosowaniem programu FuzzyTECH. Dobór struktury modelu wnioskowania. Budowa bary reguł lingwistycznych. Ustalenie postaci zbirów rozmytych. Dobór metod denazyfikacji. |
T-L-3 | Zastosowanie sieci neuronowych do budowy bazy reguł lingwistycznych. Projekt sterowania systemem produkcyjnym z zastosowaniem zbiorów rozmytych i sztucznych sieci neuronowych. |
T-L-4 | Modelowanie systemów sztucznych sieci neuronowych oraz algorytmów genetycznych z wykorzystaniem programu Matlab. |
T-W-2 | Zbiory rozmyte i przybliżone. Podstawy budowy systemów Fuzzy Logic. Bazy reguł lingwistycznych. Metody wnioskowania. Metody automatycznego generowanie baz reguł lingwistycznych. Przykłady zastosowań logiki rozmytej do sterowania procesami produkcyjnymi. |
T-W-3 | Algorytmy ewolucyjne i genetyczne, podstawowe pojęcia, operatory ewolucyjne selekcji, krzyżowania i mutacji, zasady działania i zastosowanie w optymalizacji. Przykłady zastosowań algorytmów ewolucyjnych do sterowania i harmonogramowania procesów produkcyjnych. |
T-W-1 | Definicje i klasyfikacja metod sztucznej inteligencji. Rozwój metod sztucznej inteligencji w latach 50-90 XX wieku. Omówienie kamieni milowych: test Turinga, system symboliczny. Wprowadzenie do metod przeszukiwania przestrzeni stanów. |
T-W-4 | Sztuczne sieci neuronowe. Wprowadzenie do zagadnienia. Sieć typu perceptron prosty. Uczenie sztucznych sieci neuronowych. Uczenie sieci wielowarstwowych. Przygotowanie danych uczących. Przykłady zastosowań sztucznych sieci neuronowych rozpoznawanie, klasyfikacja, analiza danych temporalnych. |
Metody nauczania | M-4 | Ćwiczenia laboratoryjne - samodzielna praca z oprogramowaniem komputerowym. |
---|
Sposób oceny | S-2 | Ocena formująca: Laboratoria - sprawdziany z bieżącej tematyki laboratoriów. |
---|
S-3 | Ocena formująca: Laboratoria - ocena sprawozdań i wykonanych na zajęciach zadań. |
Kryteria oceny | Ocena | Kryterium oceny |
---|
2,0 | Brak podstawowych umiejętności wynikających z wiedzy z zakresu materiału przerobionego na wykładach i ćwiczeniach. |
3,0 | Student rozwiązuje podstwowe zadania. Popełnia pomyłki w obliczeniach. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny. |
3,5 | Student posiadł umiejętności w stopniu pośrednim, między oceną 3,0 i 4,0. |
4,0 | Student ma dobre umiejętności kojarzenia i analizy nabytej wiedzy. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny, potrafi interpretować uzyskane wyniki. |
4,5 | Student posiadł umiejętności w stopniu pośrednim, między oceną 4,0 i 5,0. |
5,0 | Student ma bardzo dobre umiejętności kojarzenia i analizy nabytej wiedzy. Zadania rozwiązuje metodami optymalnymi. Potrafi wykorzystywać właściwe techniki komputerowe. Ćwiczenia praktyczne realizuje wzorowo, w sposób aktywny, potrafi ocenić metodę i uzyskane wyniki. |