Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Budownictwa i Architektury - Budownictwo (N1)
specjalność: Konstrukcje Budowlane i Inżynierskie

Sylabus przedmiotu Matematyka-1:

Informacje podstawowe

Kierunek studiów Budownictwo
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Matematyka-1
Specjalność przedmiot wspólny
Jednostka prowadząca Studium Matematyki
Nauczyciel odpowiedzialny Maria Szmuksta-Zawadzka <Maria.Szmuksta-Zawadzka@zut.edu.pl>
Inni nauczyciele Adam Bohonos <Adam.Bohonos@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA1 18 2,10,41zaliczenie
wykładyW1 18 1,90,59egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość matematyki z zakresu szkoły ponadgimnazjalnej - funkcje elementarne, trygonometria, umiejętność rozwiązywania równań i nierówności funkcyjnych.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie studentowi elementarnej wiedzy z zakresu matematyki wyższej omawianej w ramach przedmiotu.
C-2Wykształcenie u studenta umiejętności posługiwania się podstawowymi metodami i algorytmami obliczeniowymi wykorzystywanymi w realizacji innych przedmiotów technicznych.
C-3Ukształtowanie u studenta świadomości konieczności uczenia się przez całe życie oraz organizowania pracy własnej i zespołu.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Funkcje rzeczywiste zmiennj rzeczywistej - wykresy funkcji elementarnych; dziedziny funkcji złożonych; funkcje odwrotne.4
T-A-2Obliczanie granic ciągów i funkcji - w oparciu o odpowiednie twierdzenia i wzory.2
T-A-3Sprawdzanie ciągłości funkcji.1
T-A-4Obliczanie pochodnych funkcji z definicji i ze wzorów.4
T-A-5Wyznaczanie przedziałów monotoniczności i znajdowanie ekstremum funkcji.2
T-A-6Wyznaczanie przedziałów wypukłości, wklęsłości oraz punktów przegięcia wykresów funkcji.2
T-A-7Wyznaczanie asymptot wykresów funkcji.1
T-A-8Wykonywanie działań na liczbach zespolonych.2
18
wykłady
T-W-1Funkcje rzeczywiste jednej zmiennej rzeczywistej: funkcje złożone, odwrotne; granice i ciągłość funkcji; asymptoty wykresu funkcji.7
T-W-2Rachunek różniczkowy funkcji jednej zmiennej: pochodna i różniczka funkcji; wzory i reguły różniczkowania; twierdzenia: Lagrange'a, Taylora, de L' Hospitala; zastosowanie pochodnych do badania przebiegu funkcji.8
T-W-3Liczby zespolone - postać algebraiczna i trygonometryczna; działania; wzór Moivre'a; pierwiastkowanie.3
18

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach.18
A-A-2Samodzielna praca studenta przy rozwiązywaniu zadań i analizie problemów.31
A-A-3Konsultacje "grupowe".4
A-A-4Przygotowanie do kolokwium.10
63
wykłady
A-W-1Uczestnictwo w zajęciach.18
A-W-2Samodzielne analizowanie treści z wykładów i studiowanie literatury.27
A-W-3Konsultacje "grupowe".2
A-W-4Przygotowanie do egzaminu.8
A-W-5Egzamin.2
57

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z wyjaśnieniami i przykładami.
M-2Ćwiczenia przedmiotowe - rozwiązywanie zadań rachunkowych i problemowych dotyczących treści wykładów.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena aktywności studenta na ćwiczeniach.
S-2Ocena formująca: Ćwiczenia - student pisze dwa kolokwia.
S-3Ocena podsumowująca: Zaliczenie ćwiczeń na podstawie pozytywnych ocen z kolokwiów i aktywności na zajęciach.
S-4Ocena podsumowująca: Egzamin pisemny: zadania z elementów przebiegu zmienności funkcji oraz treści omawianych na wykładach. Student otrzymuje ocenę pozytywną, jeśli uzyskał 50% i więcej możliwych do otrzymania punktów.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B_1A_N1/B/04-1_W01
Zna podstawowe definicje, twierdzenia i algorytmy z zakresu analizy matematycznej ( funkcji jednej zmiennej rzeczywistej).
B_1A_W01, B_1A_W14T1A_W01, T1A_W02, T1A_W07InzA_W02, InzA_W05C-2, C-1T-W-1, T-W-2, T-W-3M-1, M-2S-1, S-4

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B_1A_N1/B/04-1_U01
Student potrafi wykorzystać zdobytą wiedzę oraz znalezione w literaturze fakty do rozwiązywania zadań oraz problemów matematycznych i inżynierskich.
B_1A_U05, B_1A_U14, B_1A_U22T1A_U01, T1A_U02, T1A_U05, T1A_U07, T1A_U08, T1A_U09, T1A_U15InzA_U01, InzA_U02, InzA_U07C-2, C-1T-A-3, T-A-4, T-A-5, T-A-7, T-A-8, T-A-2, T-A-6, T-A-1M-1, M-2S-1, S-2, S-4

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B_1A_N1/B/04-1_K01
Rozumie potrzebę dalszego kształcenia oraz systematycznej i uczciwej pracy.
B_1A_K01, B_1A_K04T1A_K01, T1A_K03, T1A_K04C-3T-W-1, T-W-2, T-W-3, T-A-3, T-A-4, T-A-5, T-A-7, T-A-8, T-A-2, T-A-6, T-A-1M-1, M-2S-1, S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
B_1A_N1/B/04-1_W01
Zna podstawowe definicje, twierdzenia i algorytmy z zakresu analizy matematycznej ( funkcji jednej zmiennej rzeczywistej).
2,0Student nie opanował podstawowych definicji i twierdzeń omawianych w ramach przedmiotu.
3,0Student zna wybrane definicje i twierdzenia oraz niektóre algorytmy obliczeniowe omawiane w ramach przedmiotu.
3,5Student zna prawie wszystkie postawowe definicje i twierdzenia, niektóre z nich umie zilustrować przykładami, zna niektóre algorytmy obliczeniowe.
4,0Student zna większość: - definicji podstawowych pojęć i umie je zilustrować przykładami, - twierdzeń z ich interpretacją geometryczną, - algorytmów obliczeniowych.
4,5Student zna prawie wszystkie: - definicje podstawowych pojęć wraz z przykładami ilustrującymi je i ich własności, - twierdzenia z ich interpretacją geometryczną lub dowodem, - algorytmy obliczeniowe.
5,0Student zna prawie wszystkie: - definicje omawianych pojęć wraz z przykładami ilustrującymi je i ich własności, - twiedzenia wraz z ich interpretacją geometryczną lub dowodem, - algorytmy obliczeniowe. Stosuje swą wiedzę w niektórych zadaniach problemowych.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
B_1A_N1/B/04-1_U01
Student potrafi wykorzystać zdobytą wiedzę oraz znalezione w literaturze fakty do rozwiązywania zadań oraz problemów matematycznych i inżynierskich.
2,0Nie spełnia wymagań na ocenę 3,0.
3,0Student potrafi rozwiązywać proste, typowe zadania z zakresu treści programowych. Prezentowane rozwiązania zawierają błędy rachunkowe i brak im komentarza.
3,5Student potrafi rozwiązywać większość zadań (z błędami) z zakresu treści programowych analogicznych do tych prezentowanych na wykładach i ćwiczeniach; przy rozwiązywaniu zadań stosuje komentarz (zawierający usterki).
4,0Student potrafi rozwiązywać większość zadań z zakresu treści programowych stosując przy tym poprawny zapis, obliczenia i komentarz (z nielicznymi usterkami). Potrafi weryfikować uzyskane wyniki.
4,5Student potrafi rozwiązywać zadania z zakresu treści programowych, stosując przejrzysty tok rozumowania, poprawne obliczenia i matematyczny język zapisu. Weryfikuje i interpretuje uzyskane wyniki. Prezentuje nowe (poza treściami programowymi) metody rozwiązań.
5,0Student potrafi rozwiązywać zadania z zakresu treści programowych stosując : - przejrzysty,poprawny komentarz i matematyczny język zapisu, - weryfikację i interpretację uzyskanego wyniku, - nowe (wykraczające poza treści programowe) metody rozwiązań. Potrafi prowadzić merytoryczną dyskusję problemową.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
B_1A_N1/B/04-1_K01
Rozumie potrzebę dalszego kształcenia oraz systematycznej i uczciwej pracy.
2,0Student nie uczęszcza na ćwiczenia lub na kolokwiach i egzaminach pracuje nieuczciwie.
3,0Student uczęszcza na ćwiczenia; przygotowuje się w stopniu podstawowym do zajęć; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
3,5Student uczęszcza na ćwiczenia; przygotowuje się systematycznie w stopniu podstawowym do zajęć; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie; wykazuje nieduży stopień zaangażowania w poznawanie nowych zagadnień i technik rachunkowych na ćwiczeniach.
4,0Student uczęszcza na zajęcia; przygotowuje się systematycznie do zajęć; wykazuje duży stopień zaangażowania w poznawaniu nowych zagadnień i technik rachunkowych na ćwiczeniach; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
4,5Student uczęszcza na zajęcia; przygotowuje się systematycznie do zajęć poszerzając swoją wiedzę o nowe treści z literatury; wykazuje wysoki stopień zaangażowania w poznawaniu nowych zagadnień i metod rachunkowych na ćwiczeniach; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
5,0Student uczęszcza na zajęcia; przygotowuje się systematycznie do zajęć poszerzając swoją wiedzę o nowe treści z literatury; wykazuje bardzo wysoki stopień zaangażowania w poznawaniu nowych zagadnień i metod rachunkowych na ćwiczeniach; przejmuje rolę lidera przy zespołowym rozwiązywaniu zadań i problemów; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.

Literatura podstawowa

  1. Marian Gewert, Zbigniew Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław, 2007, Dostępne są różne wydania.
  2. Marian Gewert, Zbigniew Skoczylas, Analiza matematyczna1. Definicje, twierdzenia i wzory., Oficyna wydawnicza GiS, Wrocław, 2007, Dostępne są różne wydania.
  3. Teresa Jurlewicz, Zbigniew Skoczylas, Algebra liniowa 1. Definicje, twierdzenia, wzory., Oficyna wydawnicza GiS, Wrocław, 2006, Dostępne są różne wydania.
  4. Teresa Jurlewicz, Zbigniew Skoczylas, Algebra liniowa 1.Przykłady i zadania., Oficyna wydawnicza GiS, Wrocław, 2006, Dostępne sa różne wydania

Literatura dodatkowa

  1. Dobrowolska Krystyna, Matematyka dla studiów technicznych dla pracujących, t.1, PWN, Warszawa, 1980
  2. Otto E., Matematyka dla wydziałów budowlanych i mechanicznych, tom I, PWN, Warszawa, 1978, 4
  3. Krysicki W., Włodarski L., Analiza matematyczna w zadaniach cz.1, PWN, Warszawa, 2007, Dostępne są różne wydania.

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Funkcje rzeczywiste zmiennj rzeczywistej - wykresy funkcji elementarnych; dziedziny funkcji złożonych; funkcje odwrotne.4
T-A-2Obliczanie granic ciągów i funkcji - w oparciu o odpowiednie twierdzenia i wzory.2
T-A-3Sprawdzanie ciągłości funkcji.1
T-A-4Obliczanie pochodnych funkcji z definicji i ze wzorów.4
T-A-5Wyznaczanie przedziałów monotoniczności i znajdowanie ekstremum funkcji.2
T-A-6Wyznaczanie przedziałów wypukłości, wklęsłości oraz punktów przegięcia wykresów funkcji.2
T-A-7Wyznaczanie asymptot wykresów funkcji.1
T-A-8Wykonywanie działań na liczbach zespolonych.2
18

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Funkcje rzeczywiste jednej zmiennej rzeczywistej: funkcje złożone, odwrotne; granice i ciągłość funkcji; asymptoty wykresu funkcji.7
T-W-2Rachunek różniczkowy funkcji jednej zmiennej: pochodna i różniczka funkcji; wzory i reguły różniczkowania; twierdzenia: Lagrange'a, Taylora, de L' Hospitala; zastosowanie pochodnych do badania przebiegu funkcji.8
T-W-3Liczby zespolone - postać algebraiczna i trygonometryczna; działania; wzór Moivre'a; pierwiastkowanie.3
18

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach.18
A-A-2Samodzielna praca studenta przy rozwiązywaniu zadań i analizie problemów.31
A-A-3Konsultacje "grupowe".4
A-A-4Przygotowanie do kolokwium.10
63
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach.18
A-W-2Samodzielne analizowanie treści z wykładów i studiowanie literatury.27
A-W-3Konsultacje "grupowe".2
A-W-4Przygotowanie do egzaminu.8
A-W-5Egzamin.2
57
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaB_1A_N1/B/04-1_W01Zna podstawowe definicje, twierdzenia i algorytmy z zakresu analizy matematycznej ( funkcji jednej zmiennej rzeczywistej).
Odniesienie do efektów kształcenia dla kierunku studiówB_1A_W01Ma wiedzę z wybranych działów matematyki, fizyki, chemii i innych obszarów właściwych dla kierunku budownictwo, niezbędną do formułowania oraz rozwiązywania prostych zadań z zakresu budownictwa
B_1A_W14Zna wybrane metody analityczne i programy komputerowe wspomagające projektowanie konstrukcji oraz organizację robót budowlanych
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
InzA_W05zna typowe technologie inżynierskie w zakresie studiowanego kierunku studiów
Cel przedmiotuC-2Wykształcenie u studenta umiejętności posługiwania się podstawowymi metodami i algorytmami obliczeniowymi wykorzystywanymi w realizacji innych przedmiotów technicznych.
C-1Przekazanie studentowi elementarnej wiedzy z zakresu matematyki wyższej omawianej w ramach przedmiotu.
Treści programoweT-W-1Funkcje rzeczywiste jednej zmiennej rzeczywistej: funkcje złożone, odwrotne; granice i ciągłość funkcji; asymptoty wykresu funkcji.
T-W-2Rachunek różniczkowy funkcji jednej zmiennej: pochodna i różniczka funkcji; wzory i reguły różniczkowania; twierdzenia: Lagrange'a, Taylora, de L' Hospitala; zastosowanie pochodnych do badania przebiegu funkcji.
T-W-3Liczby zespolone - postać algebraiczna i trygonometryczna; działania; wzór Moivre'a; pierwiastkowanie.
Metody nauczaniaM-1Wykład informacyjny z wyjaśnieniami i przykładami.
M-2Ćwiczenia przedmiotowe - rozwiązywanie zadań rachunkowych i problemowych dotyczących treści wykładów.
Sposób ocenyS-1Ocena formująca: Ocena aktywności studenta na ćwiczeniach.
S-4Ocena podsumowująca: Egzamin pisemny: zadania z elementów przebiegu zmienności funkcji oraz treści omawianych na wykładach. Student otrzymuje ocenę pozytywną, jeśli uzyskał 50% i więcej możliwych do otrzymania punktów.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowych definicji i twierdzeń omawianych w ramach przedmiotu.
3,0Student zna wybrane definicje i twierdzenia oraz niektóre algorytmy obliczeniowe omawiane w ramach przedmiotu.
3,5Student zna prawie wszystkie postawowe definicje i twierdzenia, niektóre z nich umie zilustrować przykładami, zna niektóre algorytmy obliczeniowe.
4,0Student zna większość: - definicji podstawowych pojęć i umie je zilustrować przykładami, - twierdzeń z ich interpretacją geometryczną, - algorytmów obliczeniowych.
4,5Student zna prawie wszystkie: - definicje podstawowych pojęć wraz z przykładami ilustrującymi je i ich własności, - twierdzenia z ich interpretacją geometryczną lub dowodem, - algorytmy obliczeniowe.
5,0Student zna prawie wszystkie: - definicje omawianych pojęć wraz z przykładami ilustrującymi je i ich własności, - twiedzenia wraz z ich interpretacją geometryczną lub dowodem, - algorytmy obliczeniowe. Stosuje swą wiedzę w niektórych zadaniach problemowych.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaB_1A_N1/B/04-1_U01Student potrafi wykorzystać zdobytą wiedzę oraz znalezione w literaturze fakty do rozwiązywania zadań oraz problemów matematycznych i inżynierskich.
Odniesienie do efektów kształcenia dla kierunku studiówB_1A_U05Potrafi poprawnie wybrać narzędzia (analityczne bądź numeryczne) do rozwiązywania problemów analizy, projektowania, wykonawstwa elementów konstrukcji oraz obiektów budowlanych
B_1A_U14Potrafi korzystać z technologii informacyjnych, zasobów Internetu oraz innych źródeł do wyszukiwania informacji ogólnych, komunikacji oraz poszukiwania oprogramowania wspomagającego pracę projektanta i organizatora robót budowlanych
B_1A_U22Ma umiejętność samokształcenia się
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
T1A_U02potrafi porozumiewać się przy użyciu różnych technik w środowisku zawodowym oraz w innych środowiskach
T1A_U05ma umiejętność samokształcenia się
T1A_U07potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej
T1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
T1A_U15potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
InzA_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
Cel przedmiotuC-2Wykształcenie u studenta umiejętności posługiwania się podstawowymi metodami i algorytmami obliczeniowymi wykorzystywanymi w realizacji innych przedmiotów technicznych.
C-1Przekazanie studentowi elementarnej wiedzy z zakresu matematyki wyższej omawianej w ramach przedmiotu.
Treści programoweT-A-3Sprawdzanie ciągłości funkcji.
T-A-4Obliczanie pochodnych funkcji z definicji i ze wzorów.
T-A-5Wyznaczanie przedziałów monotoniczności i znajdowanie ekstremum funkcji.
T-A-7Wyznaczanie asymptot wykresów funkcji.
T-A-8Wykonywanie działań na liczbach zespolonych.
T-A-2Obliczanie granic ciągów i funkcji - w oparciu o odpowiednie twierdzenia i wzory.
T-A-6Wyznaczanie przedziałów wypukłości, wklęsłości oraz punktów przegięcia wykresów funkcji.
T-A-1Funkcje rzeczywiste zmiennj rzeczywistej - wykresy funkcji elementarnych; dziedziny funkcji złożonych; funkcje odwrotne.
Metody nauczaniaM-1Wykład informacyjny z wyjaśnieniami i przykładami.
M-2Ćwiczenia przedmiotowe - rozwiązywanie zadań rachunkowych i problemowych dotyczących treści wykładów.
Sposób ocenyS-1Ocena formująca: Ocena aktywności studenta na ćwiczeniach.
S-2Ocena formująca: Ćwiczenia - student pisze dwa kolokwia.
S-4Ocena podsumowująca: Egzamin pisemny: zadania z elementów przebiegu zmienności funkcji oraz treści omawianych na wykładach. Student otrzymuje ocenę pozytywną, jeśli uzyskał 50% i więcej możliwych do otrzymania punktów.
Kryteria ocenyOcenaKryterium oceny
2,0Nie spełnia wymagań na ocenę 3,0.
3,0Student potrafi rozwiązywać proste, typowe zadania z zakresu treści programowych. Prezentowane rozwiązania zawierają błędy rachunkowe i brak im komentarza.
3,5Student potrafi rozwiązywać większość zadań (z błędami) z zakresu treści programowych analogicznych do tych prezentowanych na wykładach i ćwiczeniach; przy rozwiązywaniu zadań stosuje komentarz (zawierający usterki).
4,0Student potrafi rozwiązywać większość zadań z zakresu treści programowych stosując przy tym poprawny zapis, obliczenia i komentarz (z nielicznymi usterkami). Potrafi weryfikować uzyskane wyniki.
4,5Student potrafi rozwiązywać zadania z zakresu treści programowych, stosując przejrzysty tok rozumowania, poprawne obliczenia i matematyczny język zapisu. Weryfikuje i interpretuje uzyskane wyniki. Prezentuje nowe (poza treściami programowymi) metody rozwiązań.
5,0Student potrafi rozwiązywać zadania z zakresu treści programowych stosując : - przejrzysty,poprawny komentarz i matematyczny język zapisu, - weryfikację i interpretację uzyskanego wyniku, - nowe (wykraczające poza treści programowe) metody rozwiązań. Potrafi prowadzić merytoryczną dyskusję problemową.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaB_1A_N1/B/04-1_K01Rozumie potrzebę dalszego kształcenia oraz systematycznej i uczciwej pracy.
Odniesienie do efektów kształcenia dla kierunku studiówB_1A_K01Rozumie potrzebę uczenia się przez całe życie. Potrafi inspirować i organizować proces uczenia się innych osób
B_1A_K04Ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
T1A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
T1A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
Cel przedmiotuC-3Ukształtowanie u studenta świadomości konieczności uczenia się przez całe życie oraz organizowania pracy własnej i zespołu.
Treści programoweT-W-1Funkcje rzeczywiste jednej zmiennej rzeczywistej: funkcje złożone, odwrotne; granice i ciągłość funkcji; asymptoty wykresu funkcji.
T-W-2Rachunek różniczkowy funkcji jednej zmiennej: pochodna i różniczka funkcji; wzory i reguły różniczkowania; twierdzenia: Lagrange'a, Taylora, de L' Hospitala; zastosowanie pochodnych do badania przebiegu funkcji.
T-W-3Liczby zespolone - postać algebraiczna i trygonometryczna; działania; wzór Moivre'a; pierwiastkowanie.
T-A-3Sprawdzanie ciągłości funkcji.
T-A-4Obliczanie pochodnych funkcji z definicji i ze wzorów.
T-A-5Wyznaczanie przedziałów monotoniczności i znajdowanie ekstremum funkcji.
T-A-7Wyznaczanie asymptot wykresów funkcji.
T-A-8Wykonywanie działań na liczbach zespolonych.
T-A-2Obliczanie granic ciągów i funkcji - w oparciu o odpowiednie twierdzenia i wzory.
T-A-6Wyznaczanie przedziałów wypukłości, wklęsłości oraz punktów przegięcia wykresów funkcji.
T-A-1Funkcje rzeczywiste zmiennj rzeczywistej - wykresy funkcji elementarnych; dziedziny funkcji złożonych; funkcje odwrotne.
Metody nauczaniaM-1Wykład informacyjny z wyjaśnieniami i przykładami.
M-2Ćwiczenia przedmiotowe - rozwiązywanie zadań rachunkowych i problemowych dotyczących treści wykładów.
Sposób ocenyS-1Ocena formująca: Ocena aktywności studenta na ćwiczeniach.
S-2Ocena formująca: Ćwiczenia - student pisze dwa kolokwia.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie uczęszcza na ćwiczenia lub na kolokwiach i egzaminach pracuje nieuczciwie.
3,0Student uczęszcza na ćwiczenia; przygotowuje się w stopniu podstawowym do zajęć; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
3,5Student uczęszcza na ćwiczenia; przygotowuje się systematycznie w stopniu podstawowym do zajęć; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie; wykazuje nieduży stopień zaangażowania w poznawanie nowych zagadnień i technik rachunkowych na ćwiczeniach.
4,0Student uczęszcza na zajęcia; przygotowuje się systematycznie do zajęć; wykazuje duży stopień zaangażowania w poznawaniu nowych zagadnień i technik rachunkowych na ćwiczeniach; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
4,5Student uczęszcza na zajęcia; przygotowuje się systematycznie do zajęć poszerzając swoją wiedzę o nowe treści z literatury; wykazuje wysoki stopień zaangażowania w poznawaniu nowych zagadnień i metod rachunkowych na ćwiczeniach; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
5,0Student uczęszcza na zajęcia; przygotowuje się systematycznie do zajęć poszerzając swoją wiedzę o nowe treści z literatury; wykazuje bardzo wysoki stopień zaangażowania w poznawaniu nowych zagadnień i metod rachunkowych na ćwiczeniach; przejmuje rolę lidera przy zespołowym rozwiązywaniu zadań i problemów; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.