Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (S2)

Sylabus przedmiotu Systemy inteligentnego sterowania procesami wytwarzania:

Informacje podstawowe

Kierunek studiów Mechanika i budowa maszyn
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów nauk technicznych
Profil ogólnoakademicki
Moduł
Przedmiot Systemy inteligentnego sterowania procesami wytwarzania
Specjalność automatyzacja procesów wytwarzania
Jednostka prowadząca Instytut Technologii Mechanicznej
Nauczyciel odpowiedzialny Andrzej Jardzioch <Andrzej.Jardzioch@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 4 Grupa obieralna 3

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
projektyP3 15 0,70,44zaliczenie
wykładyW3 30 1,30,56zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Wiedza: matematyka, metody numeryczne, struktury danych i algoryty

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zdobycie widzy dotyczącej stosowanych w praktyce inżynierskiej metod ze sztucznej inteligencji. Umiejętność rozpoznania problemu i skojarzenie z możliwą do rozwiązania problemu metodą.
C-2Zdobycie umiejętności praktycznej analizy szerokiego spektrum problemów rozwiązywanych metodami sztucznej inteligencji. Zaznajomienie z możliwościami dostępnych na rynku aplikacji sztucznej inteligencji wykorzystywanych w zadaniach demonstracyjnych i praktycznych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Projekt zastosowanie logiki rozmytej do sterowania procesem wytwarania. Modelowanie systemów wnioskowania rozmytego z zastosowaniem programu FuzzyTECH. Dobór struktury modelu wnioskowania. Budowa bary reguł lingwistycznych. Ustalenie postaci zbirów rozmytych. Dobór metod denazyfikacji. Przeprowadzenie badań symulacyjnych5
T-P-2Zastosowanie sieci neuronowych do budowy układu sterowania procesem. Projekt sterowania systemem produkcyjnym z zastosowaniem zbiorów rozmytych i sztucznych sieci neuronowych.5
T-P-3Modelowanie systemów sztucznych sieci neuronowych oraz algorytmów genetycznych z wykorzystaniem programu Matlab.5
15
wykłady
T-W-1Procesy wytwarzania. Metody sterowania procesami wytwarzania. Definicje i klasyfikacja metod sztucznej inteligencji. Omówienie kamieni milowych: test Turinga, system symboliczny. Wprowadzenie do metod przeszukiwania przestrzeni stanów.6
T-W-2Zastosowanie logiki rozmytej do sterowania procesami wytwarzania. Zbiory rozmyte i przybliżone. Podstawy budowy systemów Fuzzy Logic. Bazy reguł lingwistycznych. Metody wnioskowania. Metody automatycznego generowanie baz reguł lingwistycznych. Przykłady zastosowań logiki rozmytej do sterowania procesami produkcyjnymi.8
T-W-3Zastosowanie algorytmów genetycznych do szeregowania zleceń i sterowania produkcją. Algorytmy ewolucyjne i genetyczne, podstawowe pojęcia, operatory ewolucyjne selekcji, krzyżowania i mutacji, zasady działania i zastosowanie w optymalizacji. Przykłady zastosowań algorytmów ewolucyjnych do sterowania i harmonogramowania procesów produkcyjnych.8
T-W-4Zastosowanie sztucznych sieci neuronowych do sterowania procesami wytwarzania. Wprowadzenie do zagadnienia. Sieć typu perceptron prosty. Uczenie sztucznych sieci neuronowych. Uczenie sieci wielowarstwowych. Przygotowanie danych uczących. Przykłady zastosowań sztucznych sieci neuronowych rozpoznawanie, klasyfikacja, analiza danych temporalnych.8
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1uczestnictwo w zajęciach15
A-P-2Przygotowanie do sprawdzianów.2
A-P-3Studiowanie literatury2
A-P-4Przygotowanie zadań domowych (sprawozdań i programów).2
21
wykłady
A-W-1uczestnictwo w zajęciach15
A-W-2Konsultacje z prowadzącym.1
A-W-3Przygotowanie do egzaminu.10
A-W-4Studiowanie literatury14
40

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny-prezentacja.
M-2Metoda przypadków. Omówienie przykładów rzeczywistych i ich dyskusja.
M-3Dyskusja dydaktyczna. Rozważania problemu silnej sztucznej inteligencji.
M-4Ćwiczenia laboratoryjne - samodzielna praca z oprogramowaniem komputerowym.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Wykład - egzamin pisemny z zagadnień omawianych na wykładzie. Forma otwartycz pytań i zadań do rozwiązania.
S-2Ocena formująca: Laboratoria - sprawdziany z bieżącej tematyki laboratoriów.
S-3Ocena formująca: Laboratoria - ocena sprawozdań i wykonanych na zajęciach zadań.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_APW/08-2_W01
Student potrafi rozpoznawać problemy rozwiązywane metodami sztucznej inteligencji. Potrafi wybrać metodę i objaśnić jakie są jej walory i wady. Potrafi podsumować osiągnięcia ze sztucznej inteligencji.
MBM_2A_W03T2A_W02C-1T-W-1, T-W-2, T-W-3, T-W-4M-1, M-2, M-3S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_APW/08-2_U01
Student zdobędzie umiejętność analizowania rozwiązywanego problemu, dobrania odpowiednich metod i narzędzi potrzebnych do jego rozwiązania, zaplanowania i wykonania eksperymentów z użyciem narzędzi, interpretacji wyników eksperymentów.
MBM_2A_U15T2A_U15C-2T-P-1, T-P-2, T-P-3M-4S-2, S-3

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_APW/08-2_K01
Rozumienie potrzeby samokształcenia ze względu na tempo rozwoju dziedziny i wprowadzania nowoczesnych metod sztucznej inteligencji w praktyce inżynierskiej.
MBM_2A_K04T2A_K04C-1T-W-1, T-W-2, T-W-3, T-W-4M-1, M-2S-3

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
MBM_2A_APW/08-2_W01
Student potrafi rozpoznawać problemy rozwiązywane metodami sztucznej inteligencji. Potrafi wybrać metodę i objaśnić jakie są jej walory i wady. Potrafi podsumować osiągnięcia ze sztucznej inteligencji.
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Z trudem kojarzy elementy nabytej wiedzy. Czasem nie wie jak posiadaną wiedzę wykorzystać.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 i 4,0.
4,0Student opanował podstawową wiedzę z akresu przedmiotu. Zna ograniczenia i obszary i jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 i 5,0.
5,0Student w pełni opanował wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary i jej stosowania.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
MBM_2A_APW/08-2_U01
Student zdobędzie umiejętność analizowania rozwiązywanego problemu, dobrania odpowiednich metod i narzędzi potrzebnych do jego rozwiązania, zaplanowania i wykonania eksperymentów z użyciem narzędzi, interpretacji wyników eksperymentów.
2,0Nie potrafi poprawnie rozwiązywać zadań. Przy wykonywaniu ćwiczeń laboratoryjnych nie potrafi wyjaśnić zastosowanej metody badań i ma problemy z formułowaniem wniosków.
3,0Student rozwiązuje zadania metodami nieoptymalnymi. Popełnia pomyłki w obliczeniach. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny.
3,5Student rozwiązuje zadania metodami nieoptymalnymi. Popełnia pomyłki w obliczeniach. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny.
4,0Student ma umiejętności kojarzenia i analizy nabytej wiedzy. Zadania najczęściej rozwiązuje metodami optymalnymi. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny, potrafi interpretować wyniki pomiarów.
4,5Student ma umiejętności kojarzenia i analizy nabytej wiedzy. Zadania najczęściej rozwiązuje metodami optymalnymi. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny, potrafi interpretować wyniki pomiarów.
5,0Student ma umiejętności kojarzenia i analizy nabytej wiedzy. Zadania rozwiązuje metodami optymalnymi. Potrafi wykorzystywać właściwe techniki komputerowe. Ćwiczenia praktyczne realizuje wzorowo, w sposób aktywny, potrafi ocenić metodę i wyniki badań.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
MBM_2A_APW/08-2_K01
Rozumienie potrzeby samokształcenia ze względu na tempo rozwoju dziedziny i wprowadzania nowoczesnych metod sztucznej inteligencji w praktyce inżynierskiej.
2,0Ujawnia brak zdyscyplinowania w trakcie słuchania i notowania wykładów. Przy wykonywaniu ćwiczeń praktycznych w zespołach nie angażuje się na rozwiązywanie zadań.
3,0Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach.
3,5Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach.
4,0Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji.
4,5Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji.
5,0Ujawnia własne dążenie do doskonalenia nabywanych umiejętności współpracy w zespole przy rozwiązywaniu postawionych problemów. Student czynnie uczestniczy w pracach zespołowych.

Literatura podstawowa

  1. Rusdell S, Norvig P., Artificial Intelligence a Modern Approach, Prentice-Hall, 1995
  2. Rutkowska D., Piliński M., Rutkowski L., Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, Wydawnictwo Naukowe PWN, W-wa, Łódź, 1997

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Projekt zastosowanie logiki rozmytej do sterowania procesem wytwarania. Modelowanie systemów wnioskowania rozmytego z zastosowaniem programu FuzzyTECH. Dobór struktury modelu wnioskowania. Budowa bary reguł lingwistycznych. Ustalenie postaci zbirów rozmytych. Dobór metod denazyfikacji. Przeprowadzenie badań symulacyjnych5
T-P-2Zastosowanie sieci neuronowych do budowy układu sterowania procesem. Projekt sterowania systemem produkcyjnym z zastosowaniem zbiorów rozmytych i sztucznych sieci neuronowych.5
T-P-3Modelowanie systemów sztucznych sieci neuronowych oraz algorytmów genetycznych z wykorzystaniem programu Matlab.5
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Procesy wytwarzania. Metody sterowania procesami wytwarzania. Definicje i klasyfikacja metod sztucznej inteligencji. Omówienie kamieni milowych: test Turinga, system symboliczny. Wprowadzenie do metod przeszukiwania przestrzeni stanów.6
T-W-2Zastosowanie logiki rozmytej do sterowania procesami wytwarzania. Zbiory rozmyte i przybliżone. Podstawy budowy systemów Fuzzy Logic. Bazy reguł lingwistycznych. Metody wnioskowania. Metody automatycznego generowanie baz reguł lingwistycznych. Przykłady zastosowań logiki rozmytej do sterowania procesami produkcyjnymi.8
T-W-3Zastosowanie algorytmów genetycznych do szeregowania zleceń i sterowania produkcją. Algorytmy ewolucyjne i genetyczne, podstawowe pojęcia, operatory ewolucyjne selekcji, krzyżowania i mutacji, zasady działania i zastosowanie w optymalizacji. Przykłady zastosowań algorytmów ewolucyjnych do sterowania i harmonogramowania procesów produkcyjnych.8
T-W-4Zastosowanie sztucznych sieci neuronowych do sterowania procesami wytwarzania. Wprowadzenie do zagadnienia. Sieć typu perceptron prosty. Uczenie sztucznych sieci neuronowych. Uczenie sieci wielowarstwowych. Przygotowanie danych uczących. Przykłady zastosowań sztucznych sieci neuronowych rozpoznawanie, klasyfikacja, analiza danych temporalnych.8
30

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1uczestnictwo w zajęciach15
A-P-2Przygotowanie do sprawdzianów.2
A-P-3Studiowanie literatury2
A-P-4Przygotowanie zadań domowych (sprawozdań i programów).2
21
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach15
A-W-2Konsultacje z prowadzącym.1
A-W-3Przygotowanie do egzaminu.10
A-W-4Studiowanie literatury14
40
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_APW/08-2_W01Student potrafi rozpoznawać problemy rozwiązywane metodami sztucznej inteligencji. Potrafi wybrać metodę i objaśnić jakie są jej walory i wady. Potrafi podsumować osiągnięcia ze sztucznej inteligencji.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_W03ma szczegółową wiedzę z wybranych zagadnień pokrewnych kierunków studiów powiązanych z obszarem studiowanej specjalności
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W02ma szczegółową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
Cel przedmiotuC-1Zdobycie widzy dotyczącej stosowanych w praktyce inżynierskiej metod ze sztucznej inteligencji. Umiejętność rozpoznania problemu i skojarzenie z możliwą do rozwiązania problemu metodą.
Treści programoweT-W-1Procesy wytwarzania. Metody sterowania procesami wytwarzania. Definicje i klasyfikacja metod sztucznej inteligencji. Omówienie kamieni milowych: test Turinga, system symboliczny. Wprowadzenie do metod przeszukiwania przestrzeni stanów.
T-W-2Zastosowanie logiki rozmytej do sterowania procesami wytwarzania. Zbiory rozmyte i przybliżone. Podstawy budowy systemów Fuzzy Logic. Bazy reguł lingwistycznych. Metody wnioskowania. Metody automatycznego generowanie baz reguł lingwistycznych. Przykłady zastosowań logiki rozmytej do sterowania procesami produkcyjnymi.
T-W-3Zastosowanie algorytmów genetycznych do szeregowania zleceń i sterowania produkcją. Algorytmy ewolucyjne i genetyczne, podstawowe pojęcia, operatory ewolucyjne selekcji, krzyżowania i mutacji, zasady działania i zastosowanie w optymalizacji. Przykłady zastosowań algorytmów ewolucyjnych do sterowania i harmonogramowania procesów produkcyjnych.
T-W-4Zastosowanie sztucznych sieci neuronowych do sterowania procesami wytwarzania. Wprowadzenie do zagadnienia. Sieć typu perceptron prosty. Uczenie sztucznych sieci neuronowych. Uczenie sieci wielowarstwowych. Przygotowanie danych uczących. Przykłady zastosowań sztucznych sieci neuronowych rozpoznawanie, klasyfikacja, analiza danych temporalnych.
Metody nauczaniaM-1Wykład informacyjny-prezentacja.
M-2Metoda przypadków. Omówienie przykładów rzeczywistych i ich dyskusja.
M-3Dyskusja dydaktyczna. Rozważania problemu silnej sztucznej inteligencji.
Sposób ocenyS-1Ocena podsumowująca: Wykład - egzamin pisemny z zagadnień omawianych na wykładzie. Forma otwartycz pytań i zadań do rozwiązania.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Z trudem kojarzy elementy nabytej wiedzy. Czasem nie wie jak posiadaną wiedzę wykorzystać.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 i 4,0.
4,0Student opanował podstawową wiedzę z akresu przedmiotu. Zna ograniczenia i obszary i jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 i 5,0.
5,0Student w pełni opanował wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary i jej stosowania.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_APW/08-2_U01Student zdobędzie umiejętność analizowania rozwiązywanego problemu, dobrania odpowiednich metod i narzędzi potrzebnych do jego rozwiązania, zaplanowania i wykonania eksperymentów z użyciem narzędzi, interpretacji wyników eksperymentów.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_U15potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić istniejące rozwiązania techniczne, w szczególności maszyny, systemy, procesy i usługi w zakresie inżynierii mechanicznej i kierunków pokrewnych
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U15potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
Cel przedmiotuC-2Zdobycie umiejętności praktycznej analizy szerokiego spektrum problemów rozwiązywanych metodami sztucznej inteligencji. Zaznajomienie z możliwościami dostępnych na rynku aplikacji sztucznej inteligencji wykorzystywanych w zadaniach demonstracyjnych i praktycznych.
Treści programoweT-P-1Projekt zastosowanie logiki rozmytej do sterowania procesem wytwarania. Modelowanie systemów wnioskowania rozmytego z zastosowaniem programu FuzzyTECH. Dobór struktury modelu wnioskowania. Budowa bary reguł lingwistycznych. Ustalenie postaci zbirów rozmytych. Dobór metod denazyfikacji. Przeprowadzenie badań symulacyjnych
T-P-2Zastosowanie sieci neuronowych do budowy układu sterowania procesem. Projekt sterowania systemem produkcyjnym z zastosowaniem zbiorów rozmytych i sztucznych sieci neuronowych.
T-P-3Modelowanie systemów sztucznych sieci neuronowych oraz algorytmów genetycznych z wykorzystaniem programu Matlab.
Metody nauczaniaM-4Ćwiczenia laboratoryjne - samodzielna praca z oprogramowaniem komputerowym.
Sposób ocenyS-2Ocena formująca: Laboratoria - sprawdziany z bieżącej tematyki laboratoriów.
S-3Ocena formująca: Laboratoria - ocena sprawozdań i wykonanych na zajęciach zadań.
Kryteria ocenyOcenaKryterium oceny
2,0Nie potrafi poprawnie rozwiązywać zadań. Przy wykonywaniu ćwiczeń laboratoryjnych nie potrafi wyjaśnić zastosowanej metody badań i ma problemy z formułowaniem wniosków.
3,0Student rozwiązuje zadania metodami nieoptymalnymi. Popełnia pomyłki w obliczeniach. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny.
3,5Student rozwiązuje zadania metodami nieoptymalnymi. Popełnia pomyłki w obliczeniach. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny.
4,0Student ma umiejętności kojarzenia i analizy nabytej wiedzy. Zadania najczęściej rozwiązuje metodami optymalnymi. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny, potrafi interpretować wyniki pomiarów.
4,5Student ma umiejętności kojarzenia i analizy nabytej wiedzy. Zadania najczęściej rozwiązuje metodami optymalnymi. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny, potrafi interpretować wyniki pomiarów.
5,0Student ma umiejętności kojarzenia i analizy nabytej wiedzy. Zadania rozwiązuje metodami optymalnymi. Potrafi wykorzystywać właściwe techniki komputerowe. Ćwiczenia praktyczne realizuje wzorowo, w sposób aktywny, potrafi ocenić metodę i wyniki badań.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_APW/08-2_K01Rozumienie potrzeby samokształcenia ze względu na tempo rozwoju dziedziny i wprowadzania nowoczesnych metod sztucznej inteligencji w praktyce inżynierskiej.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
Cel przedmiotuC-1Zdobycie widzy dotyczącej stosowanych w praktyce inżynierskiej metod ze sztucznej inteligencji. Umiejętność rozpoznania problemu i skojarzenie z możliwą do rozwiązania problemu metodą.
Treści programoweT-W-1Procesy wytwarzania. Metody sterowania procesami wytwarzania. Definicje i klasyfikacja metod sztucznej inteligencji. Omówienie kamieni milowych: test Turinga, system symboliczny. Wprowadzenie do metod przeszukiwania przestrzeni stanów.
T-W-2Zastosowanie logiki rozmytej do sterowania procesami wytwarzania. Zbiory rozmyte i przybliżone. Podstawy budowy systemów Fuzzy Logic. Bazy reguł lingwistycznych. Metody wnioskowania. Metody automatycznego generowanie baz reguł lingwistycznych. Przykłady zastosowań logiki rozmytej do sterowania procesami produkcyjnymi.
T-W-3Zastosowanie algorytmów genetycznych do szeregowania zleceń i sterowania produkcją. Algorytmy ewolucyjne i genetyczne, podstawowe pojęcia, operatory ewolucyjne selekcji, krzyżowania i mutacji, zasady działania i zastosowanie w optymalizacji. Przykłady zastosowań algorytmów ewolucyjnych do sterowania i harmonogramowania procesów produkcyjnych.
T-W-4Zastosowanie sztucznych sieci neuronowych do sterowania procesami wytwarzania. Wprowadzenie do zagadnienia. Sieć typu perceptron prosty. Uczenie sztucznych sieci neuronowych. Uczenie sieci wielowarstwowych. Przygotowanie danych uczących. Przykłady zastosowań sztucznych sieci neuronowych rozpoznawanie, klasyfikacja, analiza danych temporalnych.
Metody nauczaniaM-1Wykład informacyjny-prezentacja.
M-2Metoda przypadków. Omówienie przykładów rzeczywistych i ich dyskusja.
Sposób ocenyS-3Ocena formująca: Laboratoria - ocena sprawozdań i wykonanych na zajęciach zadań.
Kryteria ocenyOcenaKryterium oceny
2,0Ujawnia brak zdyscyplinowania w trakcie słuchania i notowania wykładów. Przy wykonywaniu ćwiczeń praktycznych w zespołach nie angażuje się na rozwiązywanie zadań.
3,0Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach.
3,5Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach.
4,0Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji.
4,5Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji.
5,0Ujawnia własne dążenie do doskonalenia nabywanych umiejętności współpracy w zespole przy rozwiązywaniu postawionych problemów. Student czynnie uczestniczy w pracach zespołowych.