Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (S2)

Sylabus przedmiotu Niekonwencjonalne źródła energii:

Informacje podstawowe

Kierunek studiów Mechanika i budowa maszyn
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów nauk technicznych
Profil ogólnoakademicki
Moduł
Przedmiot Niekonwencjonalne źródła energii
Specjalność niekonwencjonalne i konwencjonalne systemy energetyczne
Jednostka prowadząca Katedra Techniki Cieplnej
Nauczyciel odpowiedzialny Tomasz Kujawa <Tomasz.Kujawa@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 5 Grupa obieralna 1

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
projektyP3 15 1,00,50zaliczenie
wykładyW3 30 2,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość podstaw fizyki i termodynamiki, wymiany ciepła oraz matematyki

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studenta z tematyką możliwości wykorzystania niekonwencjonalnych źródeł energii.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Wykonanie projektu wykorzystania wybranego źródła energii niekonwencjonalnej dla danego obiektu (domu, osiedla, budynku użyteczności publicznej, ośrodka, basenu). Zapoznanie się z podstawową metodyką liczenia.15
15
wykłady
T-W-1Zasoby energii. Elektrownie słoneczne. Kolektory słoneczne. Siłownie wiatrowe. Elektrownie wodne i małe elektrownie wodne (MEW). Elektrownie i ciepłownie geotermalne. Elektrownie i elektrociepłownie wykorzystujące paliwa niekonwencjonalne (biogaz, biopaliwa). Elektrownie jądrowe. Pompy ciepła. Ogniwa paliwowe. Rury cieplne. Generatory termoelektryczne. Generatory MHD. Silnik Stirlinga.30
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1Udział na zajęciach15
A-P-2Samokształcenie, wykonanie projektu15
30
wykłady
A-W-1Uczestnictwo w wykładach30
A-W-2Samokształcenie - uzupełnianie wiedzy15
A-W-3Przygotowanie do zaliczenia15
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny.
M-2Metody praktyczne: wykonanie projektu.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Zaliczenie pisemne. System punktowy oceny sprawdzianu: ocena pozytywna uzyskanie ponad 60% punktów.
S-2Ocena podsumowująca: Projekt: Ocenie podlega: układ pracy tj. struktura, podział treści, kolejność rozdziałów, zawartość merytoryczna, styl, poprawność językowa, dobór, wykorzystanie i cytowanie literatury, cytowanie wzorów

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_NKS/09-2_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie zdefiniować i omówić pojęcie energii pochodzącej ze źródeł odnawialnych oraz scharakteryzować poszczególne ich rodzaje. Powinien mieć wiedzę pozwalającą przedstawić i omówić podstawowe sposoby wykorzystania poszczególnych rodzajów NZE oraz możliwości i celowość ich użycia w określonych warunkach. Powinien być w stanie określić znaczenie wykorzystania niekonwencjonalnych źródeł energii w kontekscie narastających problemów energetycznych i środowiskowych. Ponadto powinien mieć wiedzę pozwalającą omówić perspektywiczne technologie pozyskiwania energii. Powinien być w stanie omówić/scharakteryzować: elektrownie słoneczne, kolektory słoneczne, siłownie wiatrowe, elektrownie wodne i małe elektrownie wodne (MEW), elektrownie i ciepłownie geotermalne, elektrownie i elektrociepłownie wykorzystujące paliwa niekonwencjonalne (biogaz, biopaliwa), elektrownie jądrowe, pompy ciepła, ogniwa paliwowe, Rury cieplne, generatory termoelektryczne, generatory MHD, silnik Stirlinga.
MBM_2A_W04, MBM_2A_W08T2A_W03, T2A_W05C-1T-W-1M-1, M-2S-1, S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_NKS/09-2_U01
W wyniku przeprowadzonych zajęć student powinien umieć wykazać potrzebę i celowość wykorzystania energii ze źródeł odnawialnych, a także umieć ocenić możliwość wykorzystania (w danych warunkach) różnych rodzajów NZE celem zaspokojenia określonych potrzeb energetycznych. Powinien umieć wskazać konkretne rozwiązania przydatne do praktycznego zastosowania. Powinien umieć określić oddziaływania środowiskowe NZE. Ponadto powinien umieć korzystać z literatury naukowej i technicznej.
MBM_2A_U05T2A_U05C-1T-W-1, T-P-1M-1, M-2S-1, S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
MBM_2A_NKS/09-2_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie zdefiniować i omówić pojęcie energii pochodzącej ze źródeł odnawialnych oraz scharakteryzować poszczególne ich rodzaje. Powinien mieć wiedzę pozwalającą przedstawić i omówić podstawowe sposoby wykorzystania poszczególnych rodzajów NZE oraz możliwości i celowość ich użycia w określonych warunkach. Powinien być w stanie określić znaczenie wykorzystania niekonwencjonalnych źródeł energii w kontekscie narastających problemów energetycznych i środowiskowych. Ponadto powinien mieć wiedzę pozwalającą omówić perspektywiczne technologie pozyskiwania energii. Powinien być w stanie omówić/scharakteryzować: elektrownie słoneczne, kolektory słoneczne, siłownie wiatrowe, elektrownie wodne i małe elektrownie wodne (MEW), elektrownie i ciepłownie geotermalne, elektrownie i elektrociepłownie wykorzystujące paliwa niekonwencjonalne (biogaz, biopaliwa), elektrownie jądrowe, pompy ciepła, ogniwa paliwowe, Rury cieplne, generatory termoelektryczne, generatory MHD, silnik Stirlinga.
2,0Opanowanie wymaganego materiału wykładów na poziomie ponizej 60%.
3,0Opanowanie wymaganego materiału wykładów na poziomie 60 - 69%.
3,5Opanowanie wymaganego materiału wykładów na poziomie 70 - 79%.
4,0Opanowanie wymaganego materiału wykładów na poziomie 80 - 89%.
4,5Opanowanie wymaganego materiału wykładów na poziomie 90 - 94%.
5,0Opanowanie wymaganego materiału wykładów na poziomie 95 - 100%.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
MBM_2A_NKS/09-2_U01
W wyniku przeprowadzonych zajęć student powinien umieć wykazać potrzebę i celowość wykorzystania energii ze źródeł odnawialnych, a także umieć ocenić możliwość wykorzystania (w danych warunkach) różnych rodzajów NZE celem zaspokojenia określonych potrzeb energetycznych. Powinien umieć wskazać konkretne rozwiązania przydatne do praktycznego zastosowania. Powinien umieć określić oddziaływania środowiskowe NZE. Ponadto powinien umieć korzystać z literatury naukowej i technicznej.
2,0Opanowanie wymaganego materiału wykładów na poziomie poniżej 60%.
3,0Opanowanie wymaganego materiału wykładów na poziomie 60 - 69%.
3,5Opanowanie wymaganego materiału wykładów na poziomie 70 - 79%.
4,0Opanowanie wymaganego materiału wykładów na poziomie 80 - 89%.
4,5Opanowanie wymaganego materiału wykładów na poziomie 90 - 94%.
5,0Opanowanie wymaganego materiału wykładów na poziomie 95 - 100%.

Literatura podstawowa

  1. Nowak W., Stachel A., Borsukiewicz-Gozdur A., Zastosowania odnawialnych źródeł energii, Wyd. Politechniki Szczecińskiej, Szczecin, 2008
  2. Nowak W., Sobański R., Kabat M., Kujawa T., Systemy pozyskiwania i wykorzystania energii geotermicznej, Wyd. Uczelniane Politechniki Szczecińskiej, Szczecin, 2000
  3. Lewandowski W.M., Proekologiczne odnawialne źródła energii, WNT, Warszawa, 2007
  4. Nowak W., Stachel A., Stan i perspektywy wykorzystania odnawialnych źródeł energii w Polsce, Wyd. Politechniki Szczecińskiej, Szczecin, 2004
  5. Cieśliński J., Mikielewicz J., Niekonwencjonalne źródła energii, Wyd. Politechniki Gdańskiej, Gdańsk, 1996

Literatura dodatkowa

  1. Gronowicz J., Niekonwencjonalne źródła energii, Instytut Technologii Eksploatacji - PIB, Radom - Poznań, 2008
  2. Praca zbiorowa, Odnawialne źródła energii. Poradnik, Tarbonus sp. z o.o., Kraków - Tarnobrzeg, 2008
  3. Jastrzębska G., Odnawialne źródła energii i pojazdy proekologiczne, WNT, Warszawa, 2007
  4. Juliszewski T., Zając T., Biopaliwo rzepakowe, Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, 2007
  5. Jezierski G., Energia jądrowa wczoraj i dziś, WNT, Warszawa, 2006

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Wykonanie projektu wykorzystania wybranego źródła energii niekonwencjonalnej dla danego obiektu (domu, osiedla, budynku użyteczności publicznej, ośrodka, basenu). Zapoznanie się z podstawową metodyką liczenia.15
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Zasoby energii. Elektrownie słoneczne. Kolektory słoneczne. Siłownie wiatrowe. Elektrownie wodne i małe elektrownie wodne (MEW). Elektrownie i ciepłownie geotermalne. Elektrownie i elektrociepłownie wykorzystujące paliwa niekonwencjonalne (biogaz, biopaliwa). Elektrownie jądrowe. Pompy ciepła. Ogniwa paliwowe. Rury cieplne. Generatory termoelektryczne. Generatory MHD. Silnik Stirlinga.30
30

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Udział na zajęciach15
A-P-2Samokształcenie, wykonanie projektu15
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w wykładach30
A-W-2Samokształcenie - uzupełnianie wiedzy15
A-W-3Przygotowanie do zaliczenia15
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_NKS/09-2_W01W wyniku przeprowadzonych zajęć student powinien być w stanie zdefiniować i omówić pojęcie energii pochodzącej ze źródeł odnawialnych oraz scharakteryzować poszczególne ich rodzaje. Powinien mieć wiedzę pozwalającą przedstawić i omówić podstawowe sposoby wykorzystania poszczególnych rodzajów NZE oraz możliwości i celowość ich użycia w określonych warunkach. Powinien być w stanie określić znaczenie wykorzystania niekonwencjonalnych źródeł energii w kontekscie narastających problemów energetycznych i środowiskowych. Ponadto powinien mieć wiedzę pozwalającą omówić perspektywiczne technologie pozyskiwania energii. Powinien być w stanie omówić/scharakteryzować: elektrownie słoneczne, kolektory słoneczne, siłownie wiatrowe, elektrownie wodne i małe elektrownie wodne (MEW), elektrownie i ciepłownie geotermalne, elektrownie i elektrociepłownie wykorzystujące paliwa niekonwencjonalne (biogaz, biopaliwa), elektrownie jądrowe, pompy ciepła, ogniwa paliwowe, Rury cieplne, generatory termoelektryczne, generatory MHD, silnik Stirlinga.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_W04ma uporządkowaną i podbudowaną teoretycznie wiedzę w kluczowych zagadnieniach kierunku MiBM takich jak: konstrukcja maszyn, techniki wytwarzania, automatyzacja, metrologia, eksploatacja maszyn, energetyka
MBM_2A_W08ma poszerzoną wiedzę i zna trendy rozwojowe i główne osiągnięcia naukowe w swojej specjalności, w obszarach konstrukcji, technologii i eksploatacji maszyn i urządzeń, a także energetyki oraz zarządzania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T2A_W05ma wiedzę o trendach rozwojowych i najistotniejszych nowych osiągnięciach z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów i pokrewnych dyscyplin naukowych
Cel przedmiotuC-1Zapoznanie studenta z tematyką możliwości wykorzystania niekonwencjonalnych źródeł energii.
Treści programoweT-W-1Zasoby energii. Elektrownie słoneczne. Kolektory słoneczne. Siłownie wiatrowe. Elektrownie wodne i małe elektrownie wodne (MEW). Elektrownie i ciepłownie geotermalne. Elektrownie i elektrociepłownie wykorzystujące paliwa niekonwencjonalne (biogaz, biopaliwa). Elektrownie jądrowe. Pompy ciepła. Ogniwa paliwowe. Rury cieplne. Generatory termoelektryczne. Generatory MHD. Silnik Stirlinga.
Metody nauczaniaM-1Wykład informacyjny.
M-2Metody praktyczne: wykonanie projektu.
Sposób ocenyS-1Ocena formująca: Zaliczenie pisemne. System punktowy oceny sprawdzianu: ocena pozytywna uzyskanie ponad 60% punktów.
S-2Ocena podsumowująca: Projekt: Ocenie podlega: układ pracy tj. struktura, podział treści, kolejność rozdziałów, zawartość merytoryczna, styl, poprawność językowa, dobór, wykorzystanie i cytowanie literatury, cytowanie wzorów
Kryteria ocenyOcenaKryterium oceny
2,0Opanowanie wymaganego materiału wykładów na poziomie ponizej 60%.
3,0Opanowanie wymaganego materiału wykładów na poziomie 60 - 69%.
3,5Opanowanie wymaganego materiału wykładów na poziomie 70 - 79%.
4,0Opanowanie wymaganego materiału wykładów na poziomie 80 - 89%.
4,5Opanowanie wymaganego materiału wykładów na poziomie 90 - 94%.
5,0Opanowanie wymaganego materiału wykładów na poziomie 95 - 100%.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_NKS/09-2_U01W wyniku przeprowadzonych zajęć student powinien umieć wykazać potrzebę i celowość wykorzystania energii ze źródeł odnawialnych, a także umieć ocenić możliwość wykorzystania (w danych warunkach) różnych rodzajów NZE celem zaspokojenia określonych potrzeb energetycznych. Powinien umieć wskazać konkretne rozwiązania przydatne do praktycznego zastosowania. Powinien umieć określić oddziaływania środowiskowe NZE. Ponadto powinien umieć korzystać z literatury naukowej i technicznej.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_U05potrafi określić kierunki dalszego uczenia się, ma umiejętność samokształcenia w swojej i pokrewnych specjalnościach
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U05potrafi określić kierunki dalszego uczenia się i zrealizować proces samokształcenia
Cel przedmiotuC-1Zapoznanie studenta z tematyką możliwości wykorzystania niekonwencjonalnych źródeł energii.
Treści programoweT-W-1Zasoby energii. Elektrownie słoneczne. Kolektory słoneczne. Siłownie wiatrowe. Elektrownie wodne i małe elektrownie wodne (MEW). Elektrownie i ciepłownie geotermalne. Elektrownie i elektrociepłownie wykorzystujące paliwa niekonwencjonalne (biogaz, biopaliwa). Elektrownie jądrowe. Pompy ciepła. Ogniwa paliwowe. Rury cieplne. Generatory termoelektryczne. Generatory MHD. Silnik Stirlinga.
T-P-1Wykonanie projektu wykorzystania wybranego źródła energii niekonwencjonalnej dla danego obiektu (domu, osiedla, budynku użyteczności publicznej, ośrodka, basenu). Zapoznanie się z podstawową metodyką liczenia.
Metody nauczaniaM-1Wykład informacyjny.
M-2Metody praktyczne: wykonanie projektu.
Sposób ocenyS-1Ocena formująca: Zaliczenie pisemne. System punktowy oceny sprawdzianu: ocena pozytywna uzyskanie ponad 60% punktów.
S-2Ocena podsumowująca: Projekt: Ocenie podlega: układ pracy tj. struktura, podział treści, kolejność rozdziałów, zawartość merytoryczna, styl, poprawność językowa, dobór, wykorzystanie i cytowanie literatury, cytowanie wzorów
Kryteria ocenyOcenaKryterium oceny
2,0Opanowanie wymaganego materiału wykładów na poziomie poniżej 60%.
3,0Opanowanie wymaganego materiału wykładów na poziomie 60 - 69%.
3,5Opanowanie wymaganego materiału wykładów na poziomie 70 - 79%.
4,0Opanowanie wymaganego materiału wykładów na poziomie 80 - 89%.
4,5Opanowanie wymaganego materiału wykładów na poziomie 90 - 94%.
5,0Opanowanie wymaganego materiału wykładów na poziomie 95 - 100%.